Reviews of topical problems

Spatio-temporal pattern formation, fractals, and chaos in conceptual ecological models as applied to coupled plankton-fish dynamics

 a,  b,  a,  a,  c,  d,  e,  a
a Institute for Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya str. 3, Pushchino, Moscow Region, 142290, Russian Federation
b P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, ul. Krasikova 23, Moscow, 117218, Russian Federation
c Department of Biology, The University of New Mexico, 167A Castetter Hall, Albuquerque, New Mexico, 87131-1091, USA
d Dipartimento di Matematica, Corso Duca degli Abruzzi, 24, Politecnico di Torino, Torino, 10129, Italy
e Institute of Environmental Systems Research, University of Osnabrueck, Artilleriestr. 34, Osnabrueck, D-49069, Germany

The current turn-of-the-century period witnesses the intensive use of the bioproducts of the World Ocean while at the same time calling for precautions to preserve its ecological stability. This requires that biophysical processes in aquatic systems be comprehensively explored and new methods for monitoring their dynamics be developed. While aquatic and terrestrial ecosystems have much in common in terms of their mathematical description, there are essential differences between them. For example, the mobility of oceanic plankton is mainly controlled by diffusion processes, whereas terrestrial organisms naturally enough obey totally different laws. This paper is focused on the processes underlying the dynamics of spatially inhomogeneous plankton communities. We demonstrate that conceptual reaction-diffusion mathematical models are an appropriate tool for investigating both complex spatio-temporal plankton dynamics and the fractal properties of planktivorous fish school walks.

Fulltext is available at IOP
PACS: 05.45.−a, 92.10.−c, 92.20.Rb (all)
DOI: 10.1070/PU2002v045n01ABEH000980
Citation: Medvinskii A B, Petrovskii S V, Tikhonova I A, Tikhonov D A, Li B L, Venturino E, Malchow H, Ivanitskii G R "Spatio-temporal pattern formation, fractals, and chaos in conceptual ecological models as applied to coupled plankton-fish dynamics" Phys. Usp. 45 27–57 (2002)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Медвинский А Б, Петровский С В, Тихонова И А, Тихонов Д А, Ли Б Л, Вентурино Э, Мальхё Х, Иваницкий Г Р «Формирование пространственно-временных структур, фракталы и хаос в концептуальных экологических моделях на примере динамики взаимодействующих популяций планктона и рыбы» УФН 172 31–66 (2002); DOI: 10.3367/UFNr.0172.200201b.0031

References (268) Cited by (29) Similar articles (20) ↓

  1. G.R. Ivanitskii, A.B. Medvinskii, M.A. Tsyganov “From the dynamics of population autowaves generated by living cells to neuroinformatics37 961–989 (1994)
  2. M.A. Tsyganov, V.N. Biktashev et alWaves in systems with cross-diffusion as a new class of nonlinear waves50 263–286 (2007)
  3. G.R. Ivanitskii, A.B. Medvinskii et alFrom Maxwell’s demon to the self-organization of mass transfer processes in living systems41 1115–1126 (1998)
  4. G.R. Ivanitskii, A.B. Medvinskii, M.A. Tsyganov “From disorder to order as applied to the movement of micro-organisms34 (4) 289–316 (1991)
  5. V.K. Vanag “Waves and patterns in reaction-diffusion systems. Belousov-Zhabotinsky reaction in water-in-oil microemulsions47 923–941 (2004)
  6. A. Loskutov “Fascination of chaos53 1257–1280 (2010)
  7. K.V. Koshel, S.V. Prants “Chaotic advection in the ocean49 1151–1178 (2006)
  8. V.N. Binhi, A.V. Savin “Effects of weak magnetic fields on biological systems: physical aspects46 259–291 (2003)
  9. V.I. Klyatskin “Clustering and diffusion of particles and passive tracer density in random hydrodynamic flows46 667–688 (2003)
  10. M.I. Rabinovich, M.K. Muezzinoglu “Nonlinear dynamics of the brain: emotion and cognition53 357–372 (2010)
  11. G.N. Borisyuk, R.M. Borisyuk et alModels of neural dynamics in brain information processing — the developments of ’the decade’45 1073–1095 (2002)
  12. S.P. Kuznetsov “Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics54 119–144 (2011)
  13. O.V. Maslennikov, V.I. Nekorkin “Adaptive dynamical networks60 694–704 (2017)
  14. A.V. Slunyaev, D.E. Pelinovsky, E.N. Pelinovsky “Rogue waves in the sea: observations, physics and mathematics”, accepted
  15. F.I. Ataullakhanov, V.I. Zarnitsyna et alA new class of stopping self-sustained waves: a factor determining the spatial dynamics of blood coagulation45 619–636 (2002)
  16. A.P. Gerasev “Nonequilibrium thermodynamics of autowave processes in a catalyst bed47 991–1016 (2004)
  17. V.S. Anishchenko, T.E. Vadivasova et alStatistical properties of dynamical chaos48 151–166 (2005)
  18. V.I. Klyatskin “Integral characteristics: a key to understanding structure formation in stochastic dynamic systems54 441–464 (2011)
  19. V.P. Budaev, S.P. Savin, L.M. Zelenyi “Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: towards a quantitative definition of plasma transport features54 875–918 (2011)
  20. V.V. Klinshov, V.I. Nekorkin “Synchronization of delay-coupled oscillator networks56 1217–1229 (2013)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions