Issues

 / 

2001

 / 

July

  

Methodological notes


Dynamic chaos interference in Hamiltonian systems: experiment and potential radiophysics applications

 a,  b,  a
a New Information Systems and Technologies, Ltd., ul. Oktyabrskaya 7/10, Moscow, 127018, Russian Federation
b Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

The sign correlation of quasiperiodic oscillations with close incommensurable frequencies forms a dynamic chaos, which interferes like noise with a single interference peak and is controlled by the delay of its constituent oscillations. This property of oscillations with incommensurable frequencies can be employed in multichannel information transfer systems to form radar reception patterns and obtain uninterrupted coherent key streams in symmetric cryptographic systems. The review of known results on the generation and properties of quasiperiodic oscillations is complemented by a description of new experiments.

Fulltext pdf (395 KB)
Fulltext is also available at DOI: 10.1070/PU2001v044n07ABEH000861
PACS: 0.3.67.Dd, 05.45.Gg, 05.45.Vx, 84.40.Xb (all)
DOI: 10.1070/PU2001v044n07ABEH000861
URL: https://ufn.ru/en/articles/2001/7/d/
000173467700004
Citation: Evdokimov N V, Komolov V P, Komolov P V "Dynamic chaos interference in Hamiltonian systems: experiment and potential radiophysics applications" Phys. Usp. 44 735–754 (2001)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Евдокимов Н В, Комолов В П, Комолов П В «Интерференция динамического хаоса гамильтоновых систем: эксперимент и возможности радиофизических приложений» УФН 171 775–795 (2001); DOI: 10.3367/UFNr.0171.200107d.0775

References (47) Cited by (4) Similar articles (12) ↓

  1. N.V. Evdokimov, D.N. Klyshko et alBell’s inequalities and EPR-Bohm correlations: working classical radiofrequency modelPhys. Usp. 39 83–98 (1996)
  2. V.I. Tatarskii “Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theoremSov. Phys. Usp. 30 134–152 (1987)
  3. A.I. Musienko, L.I. Manevich “Classical mechanical analogs of relativistic effectsPhys. Usp. 47 797–820 (2004)
  4. P.S. Landa, Ya.B. Duboshinskii “Self-oscillatory systems with high-frequency energy sourcesSov. Phys. Usp. 32 723–731 (1989)
  5. A.M. Bazuev, K.M. Bokova “Demonstration of transmission interception of modulated oscillations with a Helium-neon laser beamSov. Phys. Usp. 15 821–821 (1973)
  6. A.V. Borisov, I.S. Mamaev “Strange attractors in rattleback dynamicsPhys. Usp. 46 393–403 (2003)
  7. V.V. Brazhkin, R.N. Voloshin et alPhase equilibria in partially open systems under pressure: the decomposition of stoichiometric GeO2 oxidePhys. Usp. 46 1283–1289 (2003)
  8. Yu.L. Klimontovich “Entropy and information of open systemsPhys. Usp. 42 375–384 (1999)
  9. M.D. Bal’makov “Information capacity of condensed systemsPhys. Usp. 42 1167–1173 (1999)
  10. A. Loskutov “Dynamical chaos: systems of classical mechanicsPhys. Usp. 50 939–964 (2007)
  11. A.A. Shatskii, I.D. Novikov, N.S. Kardashev “A dynamic model of the wormhole and the Multiverse modelPhys. Usp. 51 457–464 (2008)
  12. E.A. Turov “Can the magnetoelectric effect coexist with weak piezomagnetism and ferromagnetism?Phys. Usp. 37 303–310 (1994)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions