Methodological notes

Dynamic chaos interference in Hamiltonian systems: experiment and potential radiophysics applications

 a,  b,  a
a New Information Systems and Technologies, Ltd., ul. Oktyabrskaya 7/10, Moscow, 127018, Russian Federation
b Lomonosov Moscow State University, Department of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

The sign correlation of quasiperiodic oscillations with close incommensurable frequencies forms a dynamic chaos, which interferes like noise with a single interference peak and is controlled by the delay of its constituent oscillations. This property of oscillations with incommensurable frequencies can be employed in multichannel information transfer systems to form radar reception patterns and obtain uninterrupted coherent key streams in symmetric cryptographic systems. The review of known results on the generation and properties of quasiperiodic oscillations is complemented by a description of new experiments.

Fulltext is available at IOP
PACS: 0.3.67.Dd, 05.45.Gg, 05.45.Vx, 84.40.Xb (all)
DOI: 10.1070/PU2001v044n07ABEH000861
Citation: Evdokimov N V, Komolov V P, Komolov P V "Dynamic chaos interference in Hamiltonian systems: experiment and potential radiophysics applications" Phys. Usp. 44 735–754 (2001)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Евдокимов Н В, Комолов В П, Комолов П В «Интерференция динамического хаоса гамильтоновых систем: эксперимент и возможности радиофизических приложений» УФН 171 775–795 (2001); DOI: 10.3367/UFNr.0171.200107d.0775

References (47) Cited by (4) Similar articles (11) ↓

  1. N.V. Evdokimov, D.N. Klyshko et alBell’s inequalities and EPR-Bohm correlations: working classical radiofrequency model39 83–98 (1996)
  2. A.I. Musienko, L.I. Manevich “Classical mechanical analogs of relativistic effects47 797–820 (2004)
  3. A.M. Bazuev, K.M. Bokova “Demonstration of transmission interception of modulated oscillations with a Helium-neon laser beam15 821–821 (1973)
  4. A.V. Borisov, I.S. Mamaev “Strange attractors in rattleback dynamics46 393–403 (2003)
  5. V.V. Brazhkin, R.N. Voloshin et alPhase equilibria in partially open systems under pressure: the decomposition of stoichiometric GeO2 oxide46 1283–1289 (2003)
  6. Yu.L. Klimontovich “Entropy and information of open systems42 375–384 (1999)
  7. M.D. Bal’makov “Information capacity of condensed systems42 1167–1173 (1999)
  8. A. Loskutov “Dynamical chaos: systems of classical mechanics50 939–964 (2007)
  9. A.A. Shatskii, I.D. Novikov, N.S. Kardashev “A dynamic model of the wormhole and the Multiverse model51 457–464 (2008)
  10. E.A. Turov “Can the magnetoelectric effect coexist with weak piezomagnetism and ferromagnetism?37 303–310 (1994)
  11. V.I. Tatarskii “Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theorem30 134–152 (1987)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions