Reviews of topical problems

Cosmic vacuum

Lomonosov Moscow State University, Shternberg State Astronomical Institute, Universitetskii prosp. 13, Moscow, 119889, Russian Federation

Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10-20 Mpc where the cosmological expansion was originally discovered.

Fulltext is available at IOP
PACS: 98.80.−k
DOI: 10.1070/PU2001v044n11ABEH000962
Citation: Chernin A D "Cosmic vacuum" Phys. Usp. 44 1099–1118 (2001)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Чернин А Д «Космический вакуум» УФН 171 1153–1175 (2001); DOI: 10.3367/UFNr.0171.200111a.1153

References (65) Cited by (106) Similar articles (20) ↓

  1. V.A. Rubakov “Large and infinite extra dimensions44 871–893 (2001)
  2. I.L. Rozental’ “Elementary particles and cosmology (Metagalaxy and Universe)40 763–772 (1997)
  3. A.A. Logunov, Yu.M. Loskutov, M.A. Mestvirishvili “The relativistic theory of gravitation and its consequences31 581–596 (1988)
  4. R.F. Trunin “Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions37 1123–1145 (1994)
  5. Ya.B. Zel’dovich “The cosmological constant and the theory of elementary particles11 381–393 (1968)
  6. E.N. Avrorin, B.K. Vodolaga et alIntense shock waves and extreme states of matter36 (5) 337–364 (1993)
  7. S.I. Blinnikov, A.D. Dolgov “Cosmological acceleration62 529–567 (2019)
  8. O.V. Verkhodanov “Cosmological results from the Planck space mission and their comparison with data from the WMAP and BICEP2 experiments59 3–41 (2016)
  9. V.N. Lukash, E.V. Mikheeva, A.M. Malinovsky “Formation of the large-scale structure of the Universe54 983–1005 (2011)
  10. A.M. Cherepashchuk “Search for black holes46 335–371 (2003)
  11. S.F. Shandarin, A.G. Doroshkevich, Ya.B. Zel’dovich “The large-scale structure of the universe26 46–76 (1983)
  12. V.L. Ginzburg “Astrophysical aspects of cosmic-ray research (first 75 years and outlook for the future)31 491–510 (1988)
  13. B.E. Meierovich “Gravitational properties of cosmic strings44 981–997 (2001)
  14. M.I. Vysotskii, R.B. Nevzorov “Selected problems of supersymmetry phenomenology44 919–930 (2001)
  15. A.D. Dolgov “Massive and supermassive black holes in the contemporary and early Universe and problems in cosmology and astrophysics61 115–132 (2018)
  16. N.V. Krasnikov, V.A. Matveev “The search for new physics at the Large Hadron Collider47 643–670 (2004)
  17. A.F. Zakharov, M.V. Sazhin “Gravitational microlensing41 945–982 (1998)
  18. A.M. Cherepashchuk “Masses of black holes in binary stellar systems39 759–780 (1996)
  19. Yu.N. Efremov, A.D. Chernin “Large-scale star formation in galaxies46 1–20 (2003)
  20. M.V. Sadovskii “Pseudogap in high-temperature superconductors44 515–539 (2001)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions