Issues

 / 

2000

 / 

November

  

Reviews of topical problems


Artificially ionized region as a source of ozone in the stratosphere

 a,  b,  b,  b,  c,  d
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation
c Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, Kaluzhskoe shosse 4, Troitsk, Москва, 108840, Russian Federation
d Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russian Federation

A set of physical and chemical processes occurring in a microwave stratospheric discharge of nanosecond duration is discussed in connection with the effect they may have locally on the ozone layer in the artificially ionized region (AIR) in the stratosphere. The AIR, to be created at altitudes of 18-20 km by the microwave breakdown of air with ground-produced powerful electromagnetic wave beams, is planned for use in the natural physical experiment aimed at active monitoring of the ozone layer (its internal state and a set of plasma-chemical and photochemical processes) by controllably generating a considerable amount of ozone in the stratosphere. Results of relevant theoretical studies are presented, as are those of a large series of laboratory experiments performed under conditions similar to those prevailing in the stratosphere. Discharge regimes securing the efficient growth of ozone concentration are identified and studied in detail. It is demonstrated that such a stratospheric ozonizer is about as efficient as the best ground-based ozonizers used at present. For typical stratospheric conditions (low pressures and temperatures T ~ 200-220 K), it is shown that the intense generation of ozone in a microwave breakdown effected by groups of short nanosecond pulses does not virtually increase the density of nitrogen oxides — gases that play a vital role in catalytic ozone-decomposing reactions. The possibility of effectively producing ozone in prebreakdown electric fields is established experimentally. It is demonstrated that due to its long lifetime, ozone produced locally at altitudes of 18-20 km may spread widely under the action of winds and turbulent diffusion, thus leading to an additional — artificial — ozonization of the stratosphere.

Fulltext pdf (570 KB)
Fulltext is also available at DOI: 10.1070/PU2000v043n11ABEH000684
PACS: 82.40.We, 94.10.Fa
DOI: 10.1070/PU2000v043n11ABEH000684
URL: https://ufn.ru/en/articles/2000/11/b/
000166314900002
Citation: Gurevich A V, Litvak A G, Vikharev A L, Ivanov O A, Borisov N D, Sergeichev K F "Artificially ionized region as a source of ozone in the stratosphere" Phys. Usp. 43 1103–1123 (2000)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Гуревич А В, Литвак А Г, Вихарев А Л, Иванов О А, Борисов Н Д, Сергейчев К Ф «Искусственная ионизованная область как источник озона в стратосфере» УФН 170 1181–1202 (2000); DOI: 10.3367/UFNr.0170.200011b.1181

References (79) Cited by (19) Similar articles (20) ↓

  1. S.V. Ivanov, V.Ya. Panchenko “Infrared and microwave spectroscopy of ozone: historical aspectsPhys. Usp. 37 677–695 (1994)
  2. A.V. Gurevich “Nonlinear effects in the ionospherePhys. Usp. 50 1091–1121 (2007)
  3. V.L. Ginzburg, A.V. Gurevich “Nonlinear phenomena in a Plasma located in an alternating electromagnetic fieldSov. Phys. Usp. 3 175–194 (1960)
  4. V.P. Silin “Absorption of radiation by turbulent laser plasmasSov. Phys. Usp. 28 136–152 (1985)
  5. S.V. Bulanov, T.Zh. Esirkepov et alRelativistic mirrors in plasmas — novel results and perspectivesPhys. Usp. 56 429–464 (2013)
  6. G.A. Askar’yan “The self-focusing effectSov. Phys. Usp. 16 680–686 (1974)
  7. V.E. Golant, A.D. Piliya “Linear transformation and absorption of waves in a PlasmaSov. Phys. Usp. 14 413–437 (1972)
  8. A.V. Gurevich, K.P. Zybin “Runaway breakdown and electric discharges in thunderstormsPhys. Usp. 44 1119–1140 (2001)
  9. A.M. Zheltikov “Ultrashort light pulses in hollow waveguidesPhys. Usp. 45 687–718 (2002)
  10. N.B. Delone, V.P. Krainov “AC Stark shift of atomic energy levelsPhys. Usp. 42 669 (1999)
  11. Ya.L. Al’pert, A.V. Gurevich, L.P. Pitaevskii “Effects produced by an artificial satellite rapidly moving in the ionosphere or in an interplanetary mediumSov. Phys. Usp. 6 13–46 (1963)
  12. V.L. Ginzburg, A.V. Gurevich “Nonlinear phenomena in a Plasma located in an alternating electromagnetic fieldSov. Phys. Usp. 3 115–146 (1960)
  13. A.V. Eletskii, B.M. Smirnov “Dissociative attachment of an electron to a moleculeSov. Phys. Usp. 28 956–971 (1985)
  14. A.V. Gurevich, K.P. Zybin, V.A. Sirota “Small-scale structure of dark matter and microlensingPhys. Usp. 40 869–898 (1997)
  15. A.M. Zheltikov “The Raman effect in femto- and attosecond physicsPhys. Usp. 54 29–51 (2011)
  16. R.A. Ganeev “High order harmonics generation in laser surface ablation: current trendsPhys. Usp. 56 772–800 (2013)
  17. V.S. Beskin, A.V. Gurevich, Ya.N. Istomin “Physics of pulsar magnetospheresSov. Phys. Usp. 29 946–970 (1986)
  18. A.V. Gurevich, L.P. Pitaevskii, V.V. Smirnova “IONOSPHERIC AERODYNAMICSSov. Phys. Usp. 12 595–616 (1970)
  19. A.V. Gurevich, E.E. Tsedilina “Motion and spreading of inhomogeneities in a plasmaSov. Phys. Usp. 10 214–236 (1967)
  20. D.K. Belashchenko “Diffusion mechanisms in disordered systems: computer simulationPhys. Usp. 42 297–319 (1999)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions