Reviews of topical problems

Dislocation self-organization processes and crystal plasticity

Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation

The theoretical treatment of the evolution of a dislocation ensemble in a plastically deformed real crystal is discussed. Kinetic equations for the dislocation density are formulated which include elementary dislocation processes (source generation, immobilization, multiplication, annihilation, and diffusion) and on the basis of which the first three stages of the crystal’s strain-hardening curves are quantitatively analyzed. Dislocation self-organization processes leading to slip localization and various nonuniform dislocation structures are considered. Mechanisms of the formation of slip lines, slip bands, defect-free (annihilation) channels in neutron-irradiated or quenched crystals, and dislocation cellular structures are discussed in detail based on the equations obtained. A comparison of theoretical results with experimental data is made.

Fulltext is available at IOP
PACS: 61.72.Bb, 62.20.Fe, 83.50.−v (all)
DOI: 10.1070/pu1999v042n09ABEH000563
Citation: Malygin G A "Dislocation self-organization processes and crystal plasticity" Phys. Usp. 42 887 (1999)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Малыгин Г А «Процессы самоорганизации дислокаций и пластичность кристаллов» УФН 169 979–1010 (1999); DOI: 10.3367/UFNr.0169.199909c.0979

References (299) Cited by (81) Similar articles (20) ↓

  1. A.I. Olemskoi, I.A. Sklyar “Evolution of the defect structure of a solid during plastic deformation35 (6) 455–480 (1992)
  2. E.M. Nadgornyi, Yu.A. Osip’yan et alFilamentary crystals with almost the theoretical strength of perfect crystals2 282–304 (1959)
  3. B.S. Kerner, V.V. Osipov “Self-organization in active distributed media: scenarios for the spontaneous formation and evolution of dissipative structures33 (9) 679–719 (1990)
  4. A.L. Roitburd “The theory of the formation of a heterophase structure in phase transformations in solids17 326–344 (1974)
  5. R.B. Morgunov “Spin micromechanics in the physics of plasticity47 125–147 (2004)
  6. G.A. Malygin “Strength and plasticity of nanocrystalline materials and nanosized crystals54 1091–1116 (2011)
  7. A.M. Kosevich, V.S. Boiko “Dislocation theory of the elastic twinning of crystals14 286–316 (1971)
  8. A.M. Kosevich “Dynamical theory of dislocations7 837–854 (1965)
  9. E.Yu. Kokorish, N.N. Sheftal’ “Dislocations in semiconductor crystals3 840–849 (1961)
  10. V.I. Al’shits, V.L. Indenbom “Dynamic dragging of dislocations18 1–20 (1975)
  11. A.N. Vasil’ev, V.D. Buchel’nikov et alShape memory ferromagnets46 559–588 (2003)
  12. G.A. Malygin “Diffuse martensitic transitions and the plasticity of crystals with a shape memory effect44 173 (2001)
  13. A.G. Merzhanov, É.N. Rumanov “Nonlinear effects in macroscopic kinetics30 293–316 (1987)
  14. Yu.L. Klimontovich “Problems in the statistical theory of open systems: Criteria for the relative degree of order in self-organization processes32 416–433 (1989)
  15. G.L. Belen’kii, E.Yu. Salaev, R.A. Suleimanov “Deformation effects in layer crystals31 434–455 (1988)
  16. M.I. Kaganov, Ya.V. Kravchenko, V.D. Natsik “Dislocation dragging by electrons in metals16 878–891 (1974)
  17. A.A. Urusovskaya “Electric effects associated with plastic deformation of ionic crystals11 631–643 (1969)
  18. V.V. Ivanov “Evolution of earthquake processes34 (3) 230–249 (1991)
  19. A.I. Morozov, A.S. Sigov “Transport phenomena in metals with quantum defects37 229–245 (1994)
  20. A.M. Miterev “Theoretical aspects of the formation and evolution of charged particle tracks45 1019–1050 (2002)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions