Issues

 / 

1999

 / 

June

  

Methodological notes


Irreversibility and the probabilistic treatment of the dynamics of classical particles


Landau Institute for Theoretical Physics, Russian Academy of Sciences, prosp. Akademika Semenova 1A, Chernogolovka, Moscow Region, 142432, Russian Federation

It is shown that B B Kadomtsev’s idea of small ’external noise’ securing a time-irreversible evolution reduces the justification of statistical physics to a fundamentally new formulation which requires that the dynamics of a multiparticle system be treated by neglecting small acceleration particles. It turns out that this formulation not only leads naturally to irreversible evolution but also suggests a new way of constructing kinetic equations capable of correctly accounting for fluctuations. At the early, small-time, stage of evolution, the original correlations are forgotten and ’post-collisional’ ones form. It is the final portion of the first stage and the formation of the ’post-collisional’ correlations which can be described by a closed form kinetic equation. A relation between Kadomtsev’s external noise idea and Bogolyubov’s derivation of kinetic equations is established, leading to a new physical interpretation of the ’molecular chaos’ hypothesis.

Fulltext pdf (299 KB)
Fulltext is also available at DOI: 10.1070/PU1999v042n06ABEH000479
PACS: 03.65.−w, 03.65.Bz, 05.40.−a, 05.45.−a (all)
DOI: 10.1070/PU1999v042n06ABEH000479
URL: https://ufn.ru/en/articles/1999/6/e/
000081542900005
Citation: Gordienko S N "Irreversibility and the probabilistic treatment of the dynamics of classical particles" Phys. Usp. 42 573–590 (1999)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Гордиенко С Н «Необратимость и вероятностное описание динамики классических частиц.» УФН 169 653–672 (1999); DOI: 10.3367/UFNr.0169.199906e.0653

References (15) Cited by (4) Similar articles (20) ↓

  1. V.I. Klyatskin “Statistical topography and Lyapunov exponents in stochastic dynamical systemsPhys. Usp. 51 395–407 (2008)
  2. O.V. Rudenko “Nonlinear dynamics of quadratically cubic systemsPhys. Usp. 56 683–690 (2013)
  3. I.E. Mazets “Kinetic equation including wave function collapsesPhys. Usp. 41 505–507 (1998)
  4. G. Oppen “Objects and environmentPhys. Usp. 39 617–622 (1996)
  5. V.I. Bodnarchuk, L.S. Davtyan, D.A. Korneev “Geometrical phase effects in neutron opticsPhys. Usp. 39 169–177 (1996)
  6. O.G. Bakunin “Correlation and percolation properties of turbulent diffusionPhys. Usp. 46 733–744 (2003)
  7. A. Loskutov “Dynamical chaos: systems of classical mechanicsPhys. Usp. 50 939–964 (2007)
  8. N.P. Klepikov “Types of transformations used in physics, and particle ’exchange’Sov. Phys. Usp. 30 644–648 (1987)
  9. E.N. Rumanov “Critical phenomena far from equilibriumPhys. Usp. 56 93–102 (2013)
  10. E.P. Zemskov “Turing patterns and Newell—Whitehead—Segel amplitude equationPhys. Usp. 57 1035–1037 (2014)
  11. S.V. Petrov “Was Sommerfeld wrong? (To the history of the appearance of spin in relativistic wave equations)Phys. Usp. 63 721–724 (2020)
  12. A.N. Rubtsov “On the question of measurement in quantum mechanicsPhys. Usp. 66 734–740 (2023)
  13. G.A. Martynov “Nonequilibrium statistical mechanics, transport equations, and the second law of thermodynamicsPhys. Usp. 39 1045–1070 (1996)
  14. N.V. Evdokimov, D.N. Klyshko et alBell’s inequalities and EPR-Bohm correlations: working classical radiofrequency modelPhys. Usp. 39 83–98 (1996)
  15. A.V. Borisov, I.S. Mamaev “Strange attractors in rattleback dynamicsPhys. Usp. 46 393–403 (2003)
  16. A.N. Pavlov, V.S. Anishchenko “Multifractal analysis of complex signalsPhys. Usp. 50 819–834 (2007)
  17. Yu.M. Tsipenyuk “Zero point energy and zero point oscillations: how they are detected experimentallyPhys. Usp. 55 796–807 (2012)
  18. G.N. Bochkov, Yu.E. Kuzovlev “Fluctuation-dissipation relations: achievements and misunderstandingsPhys. Usp. 56 590–602 (2013)
  19. A.V. Borisov, A.O. Kazakov, S.P. Kuznetsov “Nonlinear dynamics of the rattleback: a nonholonomic modelPhys. Usp. 57 453–460 (2014)
  20. A.V. Belinsky, M.Kh. Shulman “Quantum nature of a nonlinear beam splitterPhys. Usp. 57 1022–1034 (2014)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions