Methodological notes

Irreversibility and the probabilistic treatment of the dynamics of classical particles

L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russian Federation

It is shown that B B Kadomtsev’s idea of small ’external noise’ securing a time-irreversible evolution reduces the justification of statistical physics to a fundamentally new formulation which requires that the dynamics of a multiparticle system be treated by neglecting small acceleration particles. It turns out that this formulation not only leads naturally to irreversible evolution but also suggests a new way of constructing kinetic equations capable of correctly accounting for fluctuations. At the early, small-time, stage of evolution, the original correlations are forgotten and ’post-collisional’ ones form. It is the final portion of the first stage and the formation of the ’post-collisional’ correlations which can be described by a closed form kinetic equation. A relation between Kadomtsev’s external noise idea and Bogolyubov’s derivation of kinetic equations is established, leading to a new physical interpretation of the ’molecular chaos’ hypothesis.

Fulltext is available at IOP
PACS: 03.65.−w, 03.65.Bz, 05.40.−a, 05.45.−a (all)
DOI: 10.1070/PU1999v042n06ABEH000479
Citation: Gordienko S N "Irreversibility and the probabilistic treatment of the dynamics of classical particles" Phys. Usp. 42 573–590 (1999)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Гордиенко С Н «Необратимость и вероятностное описание динамики классических частиц.» УФН 169 653–672 (1999); DOI: 10.3367/UFNr.0169.199906e.0653

References (15) Cited by (4) Similar articles (20) ↓

  1. V.I. Klyatskin “Statistical topography and Lyapunov exponents in stochastic dynamical systems51 395–407 (2008)
  2. O.V. Rudenko “Nonlinear dynamics of quadratically cubic systems56 683–690 (2013)
  3. I.E. Mazets “Kinetic equation including wave function collapses41 505–507 (1998)
  4. G. Oppen “Objects and environment39 617–622 (1996)
  5. V.I. Bodnarchuk, L.S. Davtyan, D.A. Korneev “Geometrical phase effects in neutron optics39 169–177 (1996)
  6. O.G. Bakunin “Correlation and percolation properties of turbulent diffusion46 733–744 (2003)
  7. A. Loskutov “Dynamical chaos: systems of classical mechanics50 939–964 (2007)
  8. E.N. Rumanov “Critical phenomena far from equilibrium56 93–102 (2013)
  9. E.P. Zemskov “Turing patterns and Newell—Whitehead—Segel amplitude equation57 1035–1037 (2014)
  10. S.V. Petrov “Was Sommerfeld wrong? (To the history of the appearance of spin in relativistic wave equations)63 721–724 (2020)
  11. G.A. Martynov “Nonequilibrium statistical mechanics, transport equations, and the second law of thermodynamics39 1045–1070 (1996)
  12. N.V. Evdokimov, D.N. Klyshko et alBell’s inequalities and EPR-Bohm correlations: working classical radiofrequency model39 83–98 (1996)
  13. A.V. Borisov, I.S. Mamaev “Strange attractors in rattleback dynamics46 393–403 (2003)
  14. A.N. Pavlov, V.S. Anishchenko “Multifractal analysis of complex signals50 819–834 (2007)
  15. V.I. Tatarskii “Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theorem30 134–152 (1987)
  16. Yu.M. Tsipenyuk “Zero point energy and zero point oscillations: how they are detected experimentally55 796–807 (2012)
  17. G.N. Bochkov, Yu.E. Kuzovlev “Fluctuation-dissipation relations: achievements and misunderstandings56 590–602 (2013)
  18. A.V. Borisov, A.O. Kazakov, S.P. Kuznetsov “Nonlinear dynamics of the rattleback: a nonholonomic model57 453–460 (2014)
  19. A.V. Belinsky, M.Kh. Shulman “Quantum nature of a nonlinear beam splitter57 1022–1034 (2014)
  20. I.F. Ginzburg “Particles in finite and infinite one-dimensional chains63 395–406 (2020)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions