Issues

 / 

1999

 / 

June

  

Reviews of topical problems


The problem of phase transitions in statistical mechanics


Institute of Physical Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow, 119991, Russian Federation

The first part of this review deals with the single-phase approach to the statistical theory of phase transitions. This approach is based on the assumption that a first-order phase transition is due to the loss of stability of the parent phase. We demonstrate that it is practically impossible to find the coordinates of the transition points using this criterion in the framework of the global Gibbs theory which describes the state of the entire macroscopic system. On the basis of the Ornstein-Zernike equation we formulate a local approach that analyzes the state of matter inside the correlation sphere of radius Rc \approx 10 Å. This approach is proved to be as rigorous as the Gibbs theory. In the context of the local approach we formulate a criterion that allows finding the transition points without calculating the chemical potential and the pressure of the second conjugate phase. In the second part of the review we consider second-order phase transitions (critical phenomena). The Kadanoff-Wilson theory of critical phenomena is analyzed, based on the global Gibbs approach. Again we use the Ornstein-Zernike equation to formulate a local theory of critical phenomena. With regard to experimentally established quantities this theory yields precisely the same results as the Kadanoff-Wilson theory; secondly, the local approach allows the prediction of many previously unknown details of critical phenomena, and thirdly, the local approach paves the way for constructing a unified theory of liquids that will describe the behavior of matter not only in the regular domain of the phase diagram, but also at the critical point and in its vicinity.

Fulltext pdf (473 KB)
Fulltext is also available at DOI: 10.1070/PU1999v042n06ABEH000543
PACS: 05.70.−a, 64.60.−i, 64.70.−p, 81.60.-s (all)
DOI: 10.1070/PU1999v042n06ABEH000543
URL: https://ufn.ru/en/articles/1999/6/b/
000081542900002
Citation: Martynov G A "The problem of phase transitions in statistical mechanics" Phys. Usp. 42 517–543 (1999)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Мартынов Г А «Проблемы фазовых переходов в статистической механике» УФН 169 595–624 (1999); DOI: 10.3367/UFNr.0169.199906b.0595

References (55) Cited by (49) Similar articles (20) ↓

  1. G.N. Sarkisov “Approximate equations of the theory of liquids in the statistical thermodynamics of classical liquid systemsPhys. Usp. 42 545–561 (1999)
  2. I.K. Kamilov, A.K. Murtazaev, Kh.K. Aliev “Monte Carlo studies of phase transitions and critical phenomenaPhys. Usp. 42 689–709 (1999)
  3. G.N. Sarkisov “Molecular distribution functions of stable, metastable and amorphous classical modelsPhys. Usp. 45 597–617 (2002)
  4. A.A. Likal’ter “Critical points of condensation in Coulomb systemsPhys. Usp. 43 777–797 (2000)
  5. A.V. Bushman, V.E. Fortov “Model equations of stateSov. Phys. Usp. 26 465–496 (1983)
  6. L.I. Klushin, A.M. Skvortsov, A.A. Gorbunov “An exactly solvable model for first- and second-order transitionsPhys. Usp. 41 639–649 (1998)
  7. R.S. Berry, B.M. Smirnov “Phase transitions and adjacent phenomena in simple atomic systemsPhys. Usp. 48 345–388 (2005)
  8. V.P. Skripov, A.V. Skripov “Spinodal decomposition (phase transitions via unstable states)Sov. Phys. Usp. 22 389–410 (1979)
  9. A.Yu. Grosberg “Disordered polymersPhys. Usp. 40 125–158 (1997)
  10. M.A. Anisimov, E.E. Gorodetskii, V.M. Zaprudskii “Phase transitions with coupled order parametersSov. Phys. Usp. 24 57–75 (1981)
  11. V.F. Gantmakher, V.T. Dolgopolov “Localized-delocalized electron quantum phase transitionsPhys. Usp. 51 3–22 (2008)
  12. A.I. Olemskoi “Theory of stochastic systems with singular multiplicative noisePhys. Usp. 41 269–301 (1998)
  13. N.P. Kovalenko, I.Z. Fisher “Method of integral equations in statistical theory of liquidsSov. Phys. Usp. 15 592–607 (1973)
  14. V.S. Vikhrenko “Theory of depolarized molecular light scatteringSov. Phys. Usp. 17 558–576 (1975)
  15. A.I. Alekseev “The application of the methods of quantum field theory in statistical physicsSov. Phys. Usp. 4 23–50 (1961)
  16. V.G. Boiko, Kh.I. Mogel’ et alFeatures of metastable states in liquid-vapor phase transitionsSov. Phys. Usp. 34 (2) 141–159 (1991)
  17. A.L. Roitburd “The theory of the formation of a heterophase structure in phase transformations in solidsSov. Phys. Usp. 17 326–344 (1974)
  18. I.S. Lyubutin, A.G. Gavriliuk “Research on phase transformations in 3d-metal oxides at high and ultrahigh pressure: state of the artPhys. Usp. 52 989–1017 (2009)
  19. G.A. Martynov “Statistical theory of electrolyte solutions of intermediate concentrationsSov. Phys. Usp. 10 171–187 (1967)
  20. L.I. Manevich, A.V. Savin et alSolitons in nondegenerate bistable systemsPhys. Usp. 37 859–879 (1994)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions