Methodological notes

The relation of Thomas precession to Ishlinskii’s theorem as applied to the rotating image of a relativistically moving body

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation

It is shown that for a solid body following a curvilinear trajectory its rotation angle due to the effect of the special theory of relativity (Thomson precession) is numerically equal to the rest-frame-observed solid angle through which the body-fixed axis turns as a consequence of the rotation change the body image undergoes due to Lorentz length contraction and the retardation of the light emitted by various portions of the body. In classical mechanics, the same relation connects the solid-body rotation angle to the actual solid angle that the body-fixed axis describes as the body performs a conical motion — which is a consequence of Ishlinskii’s theorem.

PACS: 03.30.+p
DOI: 10.1070/PU1999v042n05ABEH000495
Citation: Malykin G B "The relation of Thomas precession to Ishlinskii's theorem as applied to the rotating image of a relativistically moving body" Phys. Usp. 42 505–509 (1999)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Малыкин Г Б «Связь томасовской прецессии и теоремы Ишлинского, примененной к наблюдаемому вращению изображения релятивистски движущегося тела.» УФН 169 585–590 (1999); DOI: 10.3367/UFNr.0169.199905h.0585

References (50) Cited by (11) Similar articles (20) ↓

  1. G.B. Malykin “The Sagnac effect: correct and incorrect explanations43 1229 (2000)
  2. V.I. Bodnarchuk, L.S. Davtyan, D.A. Korneev “Geometrical phase effects in neutron optics39 169–177 (1996)
  3. A.A. Logunov, Yu.V. Chugreev “Special theory of relativity and the Sagnac effect31 861–864 (1988)
  4. V.I. Ritus “On the difference between Wigner’s and Møller’s approaches to the description of Thomas precession50 95–101 (2007)
  5. G.B. Malykin, V.I. Pozdnyakova “Geometric phases in singlemode fiber lightguides and fiber ring interferometers47 289–308 (2004)
  6. V.I. Ritus “Permutation asymmetry of the relativistic velocity addition law and non-Euclidean geometry51 709–721 (2008)
  7. G.B. Malykin “Para-Lorentz transformations52 263–266 (2009)
  8. G.B. Malykin “Application of the modified Duguay method for measuring the Lorentz contraction of a moving body length64 (10) (2021)
  9. G.B. Malykin “Sagnac effect in ring lasers and ring resonators. How does the refraction index of the optical medium influence the sensitivity to rotation?57 714–720 (2014)
  10. A.A. Logunov “The theory of the classical gravitational field38 179–193 (1995)
  11. V.I. Vysotskii, V.I. Vorontsov et alThe Sagnac experiment with X-radiation37 289–302 (1994)
  12. N.N. Rozanov “Superluminal localized structures of electromagnetic radiation48 167–171 (2005)
  13. M.I. Krivoruchenko “Rotation of the swing plane of Foucault’s pendulum and Thomas spin precession: two sides of one coin52 821–829 (2009)
  14. B.M. Bolotovskii, G.B. Malykin “Visible shape of moving bodies62 1012–1030 (2019)
  15. X.-B. Huang “A rigorous minimum-assumption derivation of the Lorentz transformation54 529–532 (2011)
  16. S.I. Syrovatskii “On the problem of the ’retardation’ of the relativistic contraction of moving bodies19 273–274 (1976)
  17. Yu.I. Hovsepyan “Some notes on the relativistic Doppler effect41 941–944 (1998)
  18. S.I. Blinnikov, L.B. Okun, M.I. Vysotskii “Critical velocities c/sqrt{3} and c/sqrt{2} in the general theory of relativity46 1099–1103 (2003)
  19. A.I. Musienko, L.I. Manevich “Classical mechanical analogs of relativistic effects47 797–820 (2004)
  20. P.B. Ivanov “On relativistic motion of a pair of particles having opposite signs of masses55 1232–1238 (2012)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions