Issues

 / 

1999

 / 

May

  

Methodological notes


The relation of Thomas precession to Ishlinskii’s theorem as applied to the rotating image of a relativistically moving body


Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation

It is shown that for a solid body following a curvilinear trajectory its rotation angle due to the effect of the special theory of relativity (Thomson precession) is numerically equal to the rest-frame-observed solid angle through which the body-fixed axis turns as a consequence of the rotation change the body image undergoes due to Lorentz length contraction and the retardation of the light emitted by various portions of the body. In classical mechanics, the same relation connects the solid-body rotation angle to the actual solid angle that the body-fixed axis describes as the body performs a conical motion — which is a consequence of Ishlinskii’s theorem.

Fulltext pdf (209 KB)
Fulltext is also available at DOI: 10.1070/PU1999v042n05ABEH000495
PACS: 03.30.+p
DOI: 10.1070/PU1999v042n05ABEH000495
URL: https://ufn.ru/en/articles/1999/5/f/
000080958700006
Citation: Malykin G B "The relation of Thomas precession to Ishlinskii's theorem as applied to the rotating image of a relativistically moving body" Phys. Usp. 42 505–509 (1999)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Малыкин Г Б «Связь томасовской прецессии и теоремы Ишлинского, примененной к наблюдаемому вращению изображения релятивистски движущегося тела.» УФН 169 585–590 (1999); DOI: 10.3367/UFNr.0169.199905h.0585

References (50) Cited by (12) Similar articles (20) ↓

  1. G.B. Malykin “The Sagnac effect: correct and incorrect explanationsPhys. Usp. 43 1229 (2000)
  2. V.I. Bodnarchuk, L.S. Davtyan, D.A. Korneev “Geometrical phase effects in neutron opticsPhys. Usp. 39 169–177 (1996)
  3. A.A. Logunov, Yu.V. Chugreev “Special theory of relativity and the Sagnac effectSov. Phys. Usp. 31 861–864 (1988)
  4. V.I. Ritus “On the difference between Wigner’s and Møller’s approaches to the description of Thomas precessionPhys. Usp. 50 95–101 (2007)
  5. G.B. Malykin, V.I. Pozdnyakova “Geometric phases in singlemode fiber lightguides and fiber ring interferometersPhys. Usp. 47 289–308 (2004)
  6. V.I. Ritus “Permutation asymmetry of the relativistic velocity addition law and non-Euclidean geometryPhys. Usp. 51 709–721 (2008)
  7. G.B. Malykin “Para-Lorentz transformationsPhys. Usp. 52 263–266 (2009)
  8. G.B. Malykin “Application of the modified Duguay method for measuring the Lorentz contraction of a moving body lengthPhys. Usp. 64 1058–1062 (2021)
  9. S.I. Syrovatskii “On the problem of the ’retardation’ of the relativistic contraction of moving bodiesSov. Phys. Usp. 19 273–274 (1976)
  10. G.B. Malykin “Sagnac effect in ring lasers and ring resonators. How does the refraction index of the optical medium influence the sensitivity to rotation?Phys. Usp. 57 714–720 (2014)
  11. A.A. Logunov “The theory of the classical gravitational fieldPhys. Usp. 38 179–193 (1995)
  12. Ya.A. Smorodinskii, V.A. Ugarov “Two paradoxes of the special theory of relativitySov. Phys. Usp. 15 340–346 (1972)
  13. V.I. Vysotskii, V.I. Vorontsov et alThe Sagnac experiment with X-radiationPhys. Usp. 37 289–302 (1994)
  14. B.M. Bolotovskii, V.P. Bykov “Radiation by charges moving faster than lightSov. Phys. Usp. 33 (6) 477–487 (1990)
  15. N.N. Rozanov “Superluminal localized structures of electromagnetic radiationPhys. Usp. 48 167–171 (2005)
  16. M.I. Krivoruchenko “Rotation of the swing plane of Foucault’s pendulum and Thomas spin precession: two sides of one coinPhys. Usp. 52 821–829 (2009)
  17. B.M. Bolotovskii, G.B. Malykin “Visible shape of moving bodiesPhys. Usp. 62 1012–1030 (2019)
  18. S.I. Blinnikov, L.B. Okun, M.I. Vysotskii “Critical velocities c/sqrt{3} and c/sqrt{2} in the general theory of relativityPhys. Usp. 46 1099–1103 (2003)
  19. X.-B. Huang “A rigorous minimum-assumption derivation of the Lorentz transformationPhys. Usp. 54 529–532 (2011)
  20. V.I. Ritus “Generalization of the k coefficient method in relativity to an arbitrary angle between the velocity of an observer (source) and the direction of the light ray from (to) a faraway source (observer) at restPhys. Usp. 63 601–610 (2020)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions