Issues

 / 

1999

 / 

May

  

Methodological notes


The relation of Thomas precession to Ishlinskii’s theorem as applied to the rotating image of a relativistically moving body


Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation

It is shown that for a solid body following a curvilinear trajectory its rotation angle due to the effect of the special theory of relativity (Thomson precession) is numerically equal to the rest-frame-observed solid angle through which the body-fixed axis turns as a consequence of the rotation change the body image undergoes due to Lorentz length contraction and the retardation of the light emitted by various portions of the body. In classical mechanics, the same relation connects the solid-body rotation angle to the actual solid angle that the body-fixed axis describes as the body performs a conical motion — which is a consequence of Ishlinskii’s theorem.

Fulltext pdf (209 KB)
Fulltext is also available at DOI: 10.1070/PU1999v042n05ABEH000495
PACS: 03.30.+p
DOI: 10.1070/PU1999v042n05ABEH000495
URL: https://ufn.ru/en/articles/1999/5/f/
000080958700006
Citation: Malykin G B "The relation of Thomas precession to Ishlinskii's theorem as applied to the rotating image of a relativistically moving body" Phys. Usp. 42 505–509 (1999)
BibTexBibNote ® (generic)BibNote ® (RIS)Medline RefWorks
RT Journal
T1 The relation of Thomas precession to Ishlinskii's theorem as applied to the rotating image of a relativistically moving body
A1 Malykin,G.B.
PB Physics-Uspekhi
PY 1999
FD 10 May, 1999
JF Physics-Uspekhi
JO Phys. Usp.
VO 42
IS 5
SP 505-509
DO 10.1070/PU1999v042n05ABEH000495
LK https://ufn.ru/en/articles/1999/5/f/

Оригинал: Малыкин Г Б «Связь томасовской прецессии и теоремы Ишлинского, примененной к наблюдаемому вращению изображения релятивистски движущегося тела.» УФН 169 585–590 (1999); DOI: 10.3367/UFNr.0169.199905h.0585

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions