Issues

 / 

1999

 / 

April

  

Methodological notes


Entropy and information of open systems


Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

Of the two definitions of ’information’ given by Shannon and employed in the communication theory, one is identical to that of Boltzmann’s entropy and gives in fact a measure of statistical uncertainty. The other involves the difference of unconditional and conditional entropies and, if properly specified, allows the introduction of a measure of information for an open system depending on the values of the system’s control parameters. Two classes of systems are identified. For those in the first class, an equilibrium state is possible and the law of conversation of information and entropy holds. When at equilibrium, such systems have zero information and maximum entropy. In self-organization processes, information increases away from the equilibrium state. For the systems of the other class, the equilibrium state is impossible. For these, the so-called ’chaoticity norm’ is introduced and also two kinds of self-organization processes are considered and the concept of information is appropriately defined. Common information definitions are applied to classical and quantum physical systems as well as to medical and biological systems.

Fulltext pdf (517 KB)
Fulltext is also available at DOI: 10.1070/PU1999v042n04ABEH000568
PACS: 03.65.Bz, 03.67.−a, 05.65.+c, 89.70.+c (all)
DOI: 10.1070/PU1999v042n04ABEH000568
URL: https://ufn.ru/en/articles/1999/4/e/
000080487700005
Citation: Klimontovich Yu L "Entropy and information of open systems" Phys. Usp. 42 375–384 (1999)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Климонтович Ю Л «Энтропия и информация открытых систем» УФН 169 443–452 (1999); DOI: 10.3367/UFNr.0169.199904e.0443

References (27) ↓ Cited by (30) Similar articles (20)

  1. Kadomtsev B B Dinamika i Informatsiya (Dynamics and Information, Moscow: Red. Zhurn. Usp. Fiz. Nauk, 1997); 2nd ed. (Moscow: Red. Zhurn. Usp. Fiz. Nauk, 1999)
  2. Shannon C Bell Syst. Tech. J. 27 379 (1948)
  3. Shannon C Raboty po Teorii Informatsii i Kibernetike (Papers on the Theory of Information and Cybernetics, Eds R L Dobrushin, O B Lupanov, Moscow: Inostrannaya Literatura, 1963)
  4. Khinchin A Ya Usp. Mat. Nauk 11 (1) 17 (1956)
  5. Gel’fand I M, Kolmogorov A N, Yaglom A M Dokl. Akad. Nauk SSSR 111 745 (1956)
  6. Stratonovich R L Teoriya Informatsii (Information Theory, Moscow: Sovetskoe Radio, 1975)
  7. Klimontovich Yu L Statisticheskaya Fizika (Statistical Physics, Moscow: Nauka, 1982) [Translated into English (New York: Harwood Acad. Publ., 1986)]
  8. Klimontovich Yu L Statisticheskaya Teoriya Otkrytykh Sistem (Statistical Theory of Open Systems, Moscow: Yanus, 1995) [Translated into English (Dordrecht: Kluwer Acad. Publ., 1995)]
  9. Klimontovich Yu L Phys. Scripta 58 54 (1998)
  10. Nicolis G, Prigogine I Self-Organization in Nonequilibrium Systems (New York: Wiley, 1977)
  11. Prigogine I From Being to Becoming (San Francisco: W H Freeman, 1980)
  12. Prigogine I, Stengers I Order out of Chaos (Toronto: Bantam Books, 1984)
  13. Vasil’ev V A, Romanovskiî Yu M, Yakhno V G Avtovolnovye Protsessy (Autowave Processes, Moscow: Nauka, 1987)
  14. Haken H Synergetics 2d enl. ed. (Berlin: Springer-Verlag, 1978)
  15. Haken H Advanced Synergetics (Springer Series in Synergetics, Vol. 20, Berlin: Springer-Verlag, 1983)
  16. Haken H Information and Self-Organization (Springer Series in Synergetics, Vol. 40, Berlin: Springer-Verlag, 1988)
  17. Haken H Principles of Brain Functioning (Springer Series in Synergetics, Vol. 67, Berlin: Springer-Verlag, 1996)
  18. Vol’kenshteîn M V Éntropiya i Informatsiya (Entropy and Information, Moscow: Nauka, 1986)
  19. Stratonovich R L Nelineînaya Neravnovesnaya Termodinamika (Nonlinear Nonequilibrium Thermodynamics, Moscow: Nauka, 1985) [Translated into English (Berlin: Springer-Verlag, 1992-1994)]
  20. Klimontovich Yu L Pis’ma Zh. Tekh. Fiz. 9 1089 (1983) [Sov. Tech. Phys. Lett. 9 467 (1983)]
  21. Klimontovich Yu L Pis’ma Zh. Tekh. Fiz. 10 80 (1984) [Sov. Tech. Phys. Lett. 10 33 (1984)]
  22. Anishchenko V S, Saparin P I, Anishchenko T G Zh.Tekh. Fiz. 64 (11) 1 (1994) [Tech. Phys. 39 1091 (1994)]
  23. Anishchenko V S et al. Izv. Vyssh. Uchebn. Zaved. Ser. Prikladnaya Nelineînaya Dinamika 2 (3-4) 55 (1994)
  24. Klimontovich Yu L Usp. Fiz. Nauk 166 1231 (1996) [Phys. Usp. 39 1169 (1996)]
  25. Landau L D, Lifshitz E M Kvantovaya Mekhanika. Nerelyativistskaya Teoriya 3 izd. (Quantum Mechanics: Non-Relativistic Theory, 3rd ed., Moscow: Nauka, 1974) [Translated into English (Oxford: Pergamon Press, 1977)]
  26. Sokolov A A, Ternov I M, Zhukovskiî V Ch Kvantovaya Mekhanika (Quantum Mechanics, Moscow: Nauka, 1979) [Translated into English (Moscow: Mir, 1984)]
  27. Ebeling W, Freund J, Schweitzer F Komplexe Strukturen: Entropic und Information (Stuttgart, Leipzig: B G Teubner, 1998)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions