Issues

 / 

1999

 / 

April

  

Methodological notes


Entropy and information of open systems


Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

Of the two definitions of ’information’ given by Shannon and employed in the communication theory, one is identical to that of Boltzmann’s entropy and gives in fact a measure of statistical uncertainty. The other involves the difference of unconditional and conditional entropies and, if properly specified, allows the introduction of a measure of information for an open system depending on the values of the system’s control parameters. Two classes of systems are identified. For those in the first class, an equilibrium state is possible and the law of conversation of information and entropy holds. When at equilibrium, such systems have zero information and maximum entropy. In self-organization processes, information increases away from the equilibrium state. For the systems of the other class, the equilibrium state is impossible. For these, the so-called ’chaoticity norm’ is introduced and also two kinds of self-organization processes are considered and the concept of information is appropriately defined. Common information definitions are applied to classical and quantum physical systems as well as to medical and biological systems.

Fulltext pdf (517 KB)
Fulltext is also available at DOI: 10.1070/PU1999v042n04ABEH000568
PACS: 03.65.Bz, 03.67.−a, 05.65.+c, 89.70.+c (all)
DOI: 10.1070/PU1999v042n04ABEH000568
URL: https://ufn.ru/en/articles/1999/4/e/
000080487700005
Citation: Klimontovich Yu L "Entropy and information of open systems" Phys. Usp. 42 375–384 (1999)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Îðèãèíàë: Êëèìîíòîâè÷ Þ Ë «Ýíòðîïèÿ è èíôîðìàöèÿ îòêðûòûõ ñèñòåì» ÓÔÍ 169 443–452 (1999); DOI: 10.3367/UFNr.0169.199904e.0443

References (27) Cited by (36) ↓ Similar articles (20)

  1. Lucia U, Grisolia G Mathematics 13 (19) 3214 (2025)
  2. Russev S C Physics Open 24 100285 (2025)
  3. De la Fuente I M, Cortes Je M et al Progress In Biophysics And Molecular Biology 195 167 (2025)
  4. Lisina M A, Borodulina I I et al Parodontologiâ 29 (1) 67 (2024)
  5. Morozov V A, Khantuleva T A, Yakovlev A B Vestnik St.Petersb. Univ.Math. 57 (3) 283 (2024)
  6. De la Fuente I M, Carrasco-Pujante J et al PNAS Nexus 3 (5) (2024)
  7. (VII INTERNATIONAL CONFERENCE “SAFETY PROBLEMS OF CIVIL ENGINEERING CRITICAL INFRASTRUCTURES” (SPCECI2021)) Vol. VII INTERNATIONAL CONFERENCE “SAFETY PROBLEMS OF CIVIL ENGINEERING CRITICAL INFRASTRUCTURES” (SPCECI2021)On the question of choosing a resolution for fractal analysis of fulleroid nanostructures in structural and functional materialsV. M.PetrovA. V.FedosovS. P.YakovlevA. A.Butsanets2701 (2023) p. 020033
  8. Khantuleva T A Mathematical Modeling of Shock-Wave Processes in Condensed Matter Shock Wave And High Pressure Phenomena Chapter 2 (2022) p. 31
  9. Khantuleva T A Mathematical Modeling of Shock-Wave Processes in Condensed Matter Shock Wave And High Pressure Phenomena Chapter 4 (2022) p. 95
  10. Khantuleva T A, Meshcheryakov Yu I Particles 5 (3) 407 (2022)
  11. Khantuleva T A Mathematical Modeling of Shock-Wave Processes in Condensed Matter Shock Wave And High Pressure Phenomena Chapter 6 (2022) p. 175
  12. Slesarev V I Hygiene and sanitation 100 (1) 19 (2021)
  13. Smyk M K, Sysoev I V et al Epilepsy & Behavior 96 200 (2019)
  14. Lebedinskii K M, Kovalenko A N Tech. Phys. 63 (10) 1397 (2018)
  15. Zarifullina E G, Malina O V, Nekipelova I M Mechanisms And Machine Science Vol. Graph-Based Modelling in EngineeringSearch Module as a Tool for Improvement of Classifier42 Chapter 17 (2017) p. 223
  16. de la Fuente I M Springer Series In Biophysics Vol. Systems Biology of Metabolic and Signaling NetworksMetabolic Dissipative Structures16 Chapter 8 (2014) p. 179
  17. Kasdaglis N, Oppold P Proceedings Of The Human Factors And Ergonomics Society Annual Meeting 58 (1) 105 (2014)
  18. Petrosyan K G, Hu Ch-K Phys. Rev. E 89 (4) (2014)
  19. Deffner S, Jarzynski Ch Phys. Rev. X 3 (4) (2013)
  20. Martínez de la Fuente Ildefonso IJMS 11 (9) 3540 (2010)
  21. Danilevich Ya B, Kovalenko A N, Nosyrev S P Dokl Biol Sci 429 (1) 490 (2009)
  22. Noack B R, Schlegel M et al Journal of Non-Equilibrium Thermodynamics 33 (2) (2008)
  23. Zhdanov S K, Ivlev A V, Morfill G E Physics of Plasmas 12 (7) (2005)
  24. Fedorov A A, Kurochkin V E et al Dokl Biochem Biophys 405 (1-6) 388 (2005)
  25. de Angelis U, Ivlev A V et al Physics of Plasmas 12 (5) (2005)
  26. Tsytovich V N, de Angelis U et al Physics of Plasmas 12 (8) (2005)
  27. Glasko A V Mathematical Notes 74 (3-4) 335 (2003)
  28. Pardalos P M, Sackellares J Ch et al Computational Statistics & Data Analysis 43 (1) 79 (2003)
  29. Bonitz M, Ebeling W, Romanovsky Yu M Contrib. Plasma Phys. 43 (5-6) 247 (2003)
  30. Glasko A V, Glasko A V Matem. Zametki 74 (3) 350 (2003)
  31. Pardalos P M, Yatsenko V et al Computational Statistics & Data Analysis 44 (1-2) 391 (2003)
  32. Aleskovskii V B Russian Journal Of General Chemistry 72 (4) 569 (2002)
  33. Aleskovskii V B Russian Journal Of Applied Chemistry 75 (5) 688 (2002)
  34. Pilan A M Uspekhi Fizicheskikh Nauk 171 (4) 444 (2001)
  35. Bal’makov M D Glass Phys Chem 26 (3) 205 (2000)
  36. Stoilov Yu Yu Uspekhi Fizicheskikh Nauk 170 (1) 41 (2000)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions