Issues

 / 

1998

 / 

July

  

Reviews of topical problems


An exactly solvable model for first- and second-order transitions

 a,  b,  c
a Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi prosp. 31, St. Petersburg, 199004, Russian Federation
b St. Petersburg Chemical-Pharmaceutical Academy, ul. prof. Popova 14, St. Petersburg, 197376, Russian Federation
c State Research Institute for Highly Pure Biomaterials, ul. Pudozhskaya 7, St. Petersburg, 197110, Russian Federation

The possibility of an exact analytical description of first-order and second-order transitions is demonstrated using a specific microscopic model. Predictions using the exactly calculated partition function are compared with those based on the Landau and Yang-Lee approaches. The model employed is an adsorbed polymer chain with an arbitrary number of links and an external force applied to its end, for which the variation of the partition function with the adsorption interaction parameter and the magnitude of the applied force is calculated. In the thermodynamic limit, the system has one isotropic and two anisotropic, ordered phases, each of which is characterized by two order parameters and between which first-order and second-order transitions occur and a bicritical point exists. The Landau free energy is found exactly as a function of each order parameter separately and, near the bicritical point, as a function of both of them simultaneously. An exact analytical formula is found for the distribution of the complex zeros of the partition function in first-order and second-order phase transitions. Hypotheses concerning the way in which the free energy and the positions of the complex zeros scale with the number of particles N in the system are verified.

Fulltext pdf (239 KB)
Fulltext is also available at DOI: 10.1070/PU1998v041n07ABEH000417
PACS: 05.70.Fh, 64.60.−i, 64.70.−p (all)
DOI: 10.1070/PU1998v041n07ABEH000417
URL: https://ufn.ru/en/articles/1998/7/b/
000075638400002
Citation: Klushin L I, Skvortsov A M, Gorbunov A A "An exactly solvable model for first- and second-order transitions" Phys. Usp. 41 639–649 (1998)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Клушин Л И, Скворцов А М, Горбунов А А «Точно решаемая модель, демонстрирующая фазовые переходы первого и второго рода» УФН 168 719–730 (1998); DOI: 10.3367/UFNr.0168.199807b.0719

References (30) ↓ Cited by (6) Similar articles (20)

  1. Fisher M E Lectures in Theoretical Physics 70 (Boulder: Univ. Colorado Press, 1965)
  2. Onsager L Phys. Rev. 65 117 (1944)
  3. Baxter R J Exactly Solved Models in Statistical Mechanics (London, New York: Academic Press, 1982); Phase Transitions and Critical Phenomena (Eds C Domb, M S Green, New York: Academic Press, 1972)
  4. Landau L D, Lifshitz E M Statisticheskaya Fizika (Statistical Physics) Part I (Moscow: Nauka, 1976) [Translated into English (Oxford: Pergamon Press, 1980)]
  5. Kac M, Uhlenbeck G E, Hemmer P C J. Math. Phys. 4 216 (1963)
  6. Stanley H E Phys. Rev. 176 718 (1968)
  7. Berlin T H, Kac M Phys. Rev. 86 821 (1952)
  8. Lieb E Lectures in Theoretical Physics 11D (Boulder: Univ. Colodrado Press, 1969)
  9. Grosberg A Yu, Khokhlov A R Statisticheskaya Fizika Makromolekul (Statistical Physics of Macromolecules, Moscow: Nauka, 1989) [Translated into English (New York: AIP Press, 1994)]
  10. De Gennes P-G Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell Univ. Press, 1979) [Translated into Russian (Moscow: Mir, 1982)]
  11. Zwanzig R, Lauritzen J I J. Chem. Phys. 48 3351 (1968)
  12. Birshtein T M, El’yashevich A M, Skvortsov A M Molekular. Biol. 5 78 (1971)
  13. Fisher M E J. Chem. Phys. 45 1469 (1966); Vedenov A A, Dykhne AA, Frank-Kamenetskii M D Usp. Fiz. Nauk 105 479 (1971) [Sov. Phys. Usp. 14 715 (1971)]
  14. Eisenriegler E, Kremer K, Binder K J. Chem. Phys. 77 6296 (1982)
  15. Gorbunov A A, Skvortsov A M J. Chem. Phys. 98 5961 (1993)
  16. Skvortsov A M, Gorbunov A A, Klushin L I J. Chem. Phys. 100 2325 (1994)
  17. Birstein T M, Borisov O V Polymer 32 916, 923 (1991)
  18. Patashinskii A Z, Pokrovskii V L Fluktuatsionnaya Teoriya Fazovykh Perekhodov (Fluctuation Theory of Phase Transitions, Moscow: Nauka, 1982) [Translated into English (Oxford, New York: Pergamon Press, 1979)]
  19. Yang C N, Lee T D Phys. Rev. 87 404 (1952); Lee T D, Yang C N Phys. Rev. 87 410 (1952)
  20. Grossmann S, Rosenhauer W Z. Phys. 207 138 (1967)
  21. Itzykson C, Pearson R B, Zuber J B Nucl. Phys. B 220 415 (1983)
  22. Pearson R B Phys. Rev. B 26 6285 (1982); Marinari E Nucl. Phys. B 235 123 (1984)
  23. Fleer G J et al. Polymer at Interfaces (London: Chapman and Hall, 1993)
  24. Edwards S F Proc. Phys. Soc. London 85 613 (1965)
  25. de Gennes P G Rep. Prog. Phys. 32 187 (1969)
  26. Gorbunov A A, Skvortsov A M Adv. Coll. Int. Sci. 62 31 (1995)
  27. Carslaw H S, Jaeger J C Conduction of Heat in Solids (Oxford: Clarendon Press, 1959)
  28. Lepine Y, Caille A Can. J. Phys. 56 403 (1978)
  29. Fisher M E, in Critical Phenomena (Ed. S E Green, New York: Academic Press, 1971); Fisher M E, Barber M N Phys. Rev. Lett. 28 1516 (1972)
  30. Klushin L I, Skvortsov A M, Gorbunov A A Phys. Rev. E 56 1511 (1997)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions