|
||||||||||||||||||
The lightest scalar glueballB.P. Konstantinov St. Petersburg Institute of Nuclear Physics, Russian Academy of Sciences, Gatchina, Leningrad Region, Rusian Federation Recent studies of meson spectra have enabled the resonance structure of the IJPC = 00++, 10++, 02++, 12++, and IJP = 1/2 0+ waves to be found for masses ranging up to 1900 MeV, thus fully reconstructing the 13 P0q \-{q} and 23P0q \-{q} meson multiplets. There is firm experimental evidence for the existence of five scalar-isoscalar states in this mass range, four of which are q \-{q} states and members of the 13 P0q \-{q} and 23 P0q \-{q} nonets, whereas the fifth falls out of the quark picture and displays all the properties of the lightest possible scalar glueball. A dispersion analysis of the 00++ wave elucidates how the mixture of the pure glueball state (or gluonium) with neighboring scalar q \-{q} states forms: three scalar mesons, namely two relatively narrow f0(1300) and f0(1500) resonances and a very broad f0(1530-250+90) resonance, share the gluonium, the broad resonance being the gluonium’s descendant and accounting for about 40 to 50% of it.
|
||||||||||||||||||
|