Issues

 / 

1998

 / 

January

  

Physics of our days


Single-cycle waveforms and non-periodic waves in dispersive media (exactly solvable models)

 a, b
a Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation
b Space Research Institute, Russian Academy of Sciences, Profsoyuznaya str. 84/32, Moscow, 117997, Russian Federation

Exactly solvable models for impulse time domain electromagnetics of dispersive media are developed to describe the interaction of ultrashort (single-cycle) transients with certain classes of insulators and conductors. Transient-excited fields are described analytically by means on new, exact, non-periodic and non-stationary solutions to Maxwell’s equations, obtained directly in the time domain without using Fourier-expansion or time-space separation methods. Such non-separable solutions form the mathematical basis of non-periodic waves optics. Extensions to spherical and MHD single-cycle transients, shock-excited distributed transmission lines, and some inhomogeneous and nonlinear media are presented. A flexible technique for modeling real transients by Laguerre functions is developed which enables the shape and duration dependence of the refraction and reflection features of single-cycle waveforms to be presented explicitly.

Fulltext pdf (313 KB)
Fulltext is also available at DOI: 10.1070/PU1998v041n01ABEH000331
PACS: 02.50.Ey, 05.40.+j, 42.65.Ky (all)
DOI: 10.1070/PU1998v041n01ABEH000331
URL: https://ufn.ru/en/articles/1998/1/d/
000072428700004
Citation: Shvartsburg A B "Single-cycle waveforms and non-periodic waves in dispersive media (exactly solvable models)" Phys. Usp. 41 77–94 (1998)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Шварцбург А Б «Видеоимпульсы и непериодические волны в диспергирующих средах (точно решаемые модели)» УФН 168 85–103 (1998); DOI: 10.3367/UFNr.0168.199801e.0085

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions