Issues

 / 

1997

 / 

February

  

Reviews of topical problems


Disordered polymers


Institute for Biochemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow, 119334, Russian Federation

A single polymer macromolecule is considered with disorder types such as branches, knots, and heterogeneous sequences of chemical units. In all cases, simple theoretical approaches are employed to gain useful physical insights. For branched polymers, a simple Flory-type theory is described by means of which the difference between the universality classes for molecules with quenched and annealed branches is demonstrated. For knots, another Flory-type theory is suggested to describe the swelling and/or collapse of a quenched topology ring or the size distribution for the annealed case. To consider heteropolymers, the Random Energy Model borrowed from the spin glass theory is systematically employed. This allows a simple yet rigorous description of both the freezing transition of a random sequence globule and the use of the canonical ensemble for designing sequences with energy-optimized ground state conformation. Along with the analytical theory, computer tests for the freezing and design processes are discussed. The sequence design scheme is shown to yield a specific prediction concerning the character of correlations in protein sequences. Statistical tests confirming this prediction are described.

Fulltext pdf (678 KB)
Fulltext is also available at DOI: 10.1070/PU1997v040n02ABEH000192
PACS: 36.20.−r, 64.70.−p, 87.10.+e, 87.10.-v (all)
DOI: 10.1070/PU1997v040n02ABEH000192
URL: https://ufn.ru/en/articles/1997/2/b/
A1997WT28000002
Citation: Grosberg A Yu "Disordered polymers" Phys. Usp. 40 125–158 (1997)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Гросберг А Ю «Неупорядоченные полимеры» УФН 167 129–166 (1997); DOI: 10.3367/UFNr.0167.199702b.0129

References (157) Cited by (36) ↓ Similar articles (20)

  1. Finkelstein A V, Bogatyreva N S et al Biophys Rev 14 1255 (2022)
  2. Soranno A Archives Of Biochemistry And Biophysics 685 108305 (2020)
  3. Polotsky A A Polym. Sci. Ser. C 60 3 (2018)
  4. Li S, Erdemci-Tandogan G et al J. Phys.: Condens. Matter 30 044002 (2018)
  5. Caetano D L Z, de Carvalho S J et al Phys. Chem. Chem. Phys. 19 23397 (2017)
  6. Bruinsma R F, Comas-Garcia M et al Phys. Rev. E 93 (3) (2016)
  7. Wagner Je, Erdemci-Tandogan G, Zandi R J. Phys.: Condens. Matter 27 495101 (2015)
  8. Grosberg A Y Soft Matter 10 560 (2014)
  9. Kolupaev B B, Lyashuk T G, Kolupaev B S J Eng Phys Thermophy 87 474 (2014)
  10. van der Schoot P, Zandi R J Biol Phys 39 289 (2013)
  11. Zhao Ya, Ferrari F J. Stat. Mech. 2013 P10010 (2013)
  12. Lyashuk T G, Kolupaev B B International Polymer Science And Technology 39 31 (2012)
  13. Zhao Ya, Ferrari F J. Stat. Mech. 2012 P11022 (2012)
  14. Grosberg A Yu Polym. Sci. Ser. C 54 1 (2012)
  15. Bogacheva E N, Bogachev A N et al BIOPHYSICS 56 1011 (2011)
  16. Kozyrev S V Proc. Steklov Inst. Math. 274 1 (2011)
  17. Maresov E A, Semenov A N Macromolecules 41 9439 (2008)
  18. Subbotin A V, Semenov A N Polym. Sci. Ser. A 49 1328 (2007)
  19. Grosberg A Yu, Khokhlov A R Advances In Polymer Science Vol. Conformation-Dependent Design of Sequences in Copolymers IIAfter-Action of the Ideas of I.M. Lifshitz in Polymer and Biopolymer Physics196 Chapter 55 (2006) p. 189
  20. Grechannikov A V 21 (1) (2006)
  21. Semenov A N Europhys. Lett. 76 1116 (2006)
  22. Semenov A N Phys. Rev. E 73 (4) (2006)
  23. Olemskoi A, Savelyev A Physics Reports 419 145 (2005)
  24. Govorun E N, Khokhlov A R, Semenov A N Eur. Phys. J. E 12 255 (2003)
  25. Grosberg A, Frisch H J. Phys. A: Math. Gen. 36 8955 (2003)
  26. Borovinskiy A L, Grosberg A Yu 118 5201 (2003)
  27. Krupyanskii Yu F, Gol’danskii V I Uspekhi Fizicheskikh Nauk 172 1247 (2002)
  28. Ferrari F Annalen Der Physik 514 255 (2002)
  29. Olemskoi A I Uspekhi Fizicheskikh Nauk 171 503 (2001)
  30. Nelson E D, Wolynes P G, Onuchic J N Nonconvex Optimization And Its Applications Vol. Optimization in Computational Chemistry and Molecular BiologyAn approach to detect the dominant folds of proteinlike heteropolymers from the statistics of a homopolymeric chain40 Chapter 7 (2000) p. 107
  31. Denesyuk N A, Erukhimovich I Ya 113 3894 (2000)
  32. Finkelstein A V, Badretdinov A Ya Folding And Design 3 67 (1998)
  33. Semenov A N, Likhtman A E Macromolecules 31 9058 (1998)
  34. Khalatur P G, Ivanov V A et al Russ Chem Bull 47 855 (1998)
  35. Khokhlov A R, Khalatur P G Physica A: Statistical Mechanics And Its Applications 249 253 (1998)
  36. Zhdanov V P, Kasemo B Proteins 29 508 (1997)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions