Issues

 / 

1997

 / 

December

  

Physics of our days


Collectively fluctuating assets in the presence of arbitrage opportunities, and option pricing

 a,  b
a The University of Chicago, 5801 South Ellis Ave., Chicago, Illinois, 60637, USA
b Department of Physics and James Frank Institute, University of Chicago, Chicago, Illinois, USA

Methods of functional analysis are applied to describe collectively fluctuating default-free pure discount bonds subject to trading-related noise which generates arbitrage opportunities. Two key elements of the model are: (i) the naturally incorporated fixed bond price at maturity which is achieved by making use of only those fluctuating paths of price motion which terminate at a specified final condition, and (ii) the most attractive arbitrage opportunities between bonds with close maturities, with modeled a local linear approximation. The model can be written in different closed forms as a stochastic partial differential equation. The functional Black-Scholes equation for contingent claims is derived, and a connection with the conventional methods of option valuation is indicated.

Fulltext pdf (268 KB)
Fulltext is also available at DOI: 10.1070/PU1997v040n12ABEH000319
PACS: 01.75.+m, 02.30.Sa, 02.90.+p, 89.90.+n (all)
DOI: 10.1070/PU1997v040n12ABEH000319
URL: https://ufn.ru/en/articles/1997/12/b/
000071721900002
Citation: Adamchuk A N, Esipov S E "Collectively fluctuating assets in the presence of arbitrage opportunities, and option pricing" Phys. Usp. 40 1239–1248 (1997)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Адамчук А Н, Есипов С Е «Коллективно флуктуирующие активы при наличии арбитражных возможностей и оценка платежных обязательств» УФН 167 1295–1306 (1997); DOI: 10.3367/UFNr.0167.199712b.1295

References (22) ↓ Cited by (5) Similar articles (5)

  1. Heath D, Jarrow R, Morton A "Bond Pricing and the Term Structure of the Interest Rates: A New Methodology" Econometrica 60 77 (1992)
  2. Brace A, Gatarek D, Musiela M "The Market Model of Interest Rate Dynamics" Preprint Dept. of Statistics, School of Mathematics, UNSW, Report N S95-2 (Australia)
  3. Chen L "Stochastic Mean and Stochastic Volatility - a Three-Factor Model of the Term Structure of Interest Rates and its Application in Derivatives Pricing and Risk Management" Financial Markets, Institutions Instrum. 5 1 (1996)
  4. Hull J, White A "Pricing Interest Rates Derivative Securities" Rev. Financial Studies 3 573 (1990)
  5. Vasicek O A "An Equilibrium Characterization of the Term Structure" J. Financial Economics 5 177 (1977)
  6. Merton R "The Theory of Rational Option Pricing" Bell J. Economics Management Sci. 4 141 (1973)
  7. Hull J Options, Futures, and other Derivative Securities 2nd ed. (New Jersey, Prentice Hall: Englewood Cliffs, 1993)
  8. Ball C A, Torous W N "Bond Price Dynamics and Options" J. Financial Quantitat. Analysis 18 517 (1993)
  9. Cheng S "On the Feasibility of Arbitrage-Based Option Pricing when Stochastic Bond Price Processes are Involved" J. Econ. Theor. 53 185 (1991)
  10. Markowitz H M "Portfolio Selection" J. Finance 7 77 (1952)
  11. Cox J C, Ingersoll J E, Ross S A "A Theory of the Term Structure of Interest Rates" Econometrica 53 385 (1985)
  12. Ho T S Y, Lee S -B "Term Structure Movements and Pricing Interest Rates Contingent Claims" J. Finance 41 1011 (1986)
  13. Feynman R P, Hibbs A R Quantum Mechanics and Path Integrals (New York: McGraw-Hill, 1965)
  14. Duffie D Security Markets. Stochastic Models (Boston: Academic Press, 1988)
  15. Zinn-Justin J Quantum Field Theory and Critical Phenomena (Oxford: Clarendon Press, 1990)
  16. Breaks J D "Yield Curve Arbitrage and Trading", in The Handbook of Treasury Securities (Ed. F J Fabozzi, Chicago: Probus, 1987)
  17. Burgers J M The Non-linear Diffusion Equation (Dordrecht: Reidel, 1974)
  18. Krug J, Spohn H, in Solids far from Equilibrium: Growth, Morphology and Defects (Ed. C Godreche, Cambridge: Cambridge University Press, 1990)
  19. Esipov S E, Newman T J "Interface Growth and Burgers Turbulence: The Problem of Random Initial Conditions" Phys. Rev. E 48 1046 (1993); see also: Esipov S E "Energy Decay in Burgers Turbulence and Interface Growth: The Problem of Random Initial Conditions II" Phys. Rev. E 49 2070 (1994)
  20. Hodges S, Carverhill A "Quasi Mean Reversion in an Efficient Stock Market: The Characterization of Economic Equilibria which Support Black-Scholes Option Pricing" Econ. J. 103 395 (1993)
  21. Itzykson C, Zuber J -B Quantum Field Theory (New York: McGraw-Hill, 1980)
  22. Van Kampen N G Stochastic Processes in Physics and Chemistry (Amsterdam: North-Holland, 1981)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions