Issues

 / 

1997

 / 

November

  

Reviews of topical problems


Hamiltonian formalism for nonlinear waves

,
Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation

The Hamiltonian description of hydrodynamic type systems in application to plasmas, hydrodynamics, and magnetohydrodynamics is reviewed with emphasis on the problem of introducing canonical variables. The relation to other Hamiltonian approaches, in particular natural-variable Poisson brackets, is pointed out. It is shown that the degeneracy of noncanonical Poisson brackets relates to a special type of symmetry, the relabeling transformations of fluid-particle Lagrangian markers, from which all known vorticity conservation theorems, such as Ertel’s, Cauchy’s, Kelvin’s, as well as vorticity frozenness and the topological Hopf invariant, are derived. The application of canonical variables to collisionless plasma kinetics is described. The Hamiltonian structure of Benney’s equations and of the Rossby wave equation is discussed. Davey-Stewartson’s equation is given the Hamiltonian form. A general method for treating weakly nonlinear waves is presented based on classical perturbation theory and the Hamiltonian reduction technique.

Fulltext pdf (411 KB)
Fulltext is also available at DOI: 10.1070/PU1997v040n11ABEH000304
PACS: 52.30.−q, 52.35.Ra, 52.55.Fa (all)
DOI: 10.1070/PU1997v040n11ABEH000304
URL: https://ufn.ru/en/articles/1997/11/a/
000071302300001
Citation: Zakharov V E, Kuznetsov E A "Hamiltonian formalism for nonlinear waves" Phys. Usp. 40 1087–1116 (1997)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Îðèãèíàë: Çàõàðîâ Â Å, Êóçíåöîâ Å À «Ãàìèëüòîíîâñêèé ôîðìàëèçì äëÿ íåëèíåéíûõ âîëí» ÓÔÍ 167 1137–1167 (1997); DOI: 10.3367/UFNr.0167.199711a.1137

References (85) Cited by (275) ↓ Similar articles (20)

  1. Kochurin E A Chaos, Solitons & Fractals 191 115828 (2025)
  2. Gubarev Yu G, Kotelnikova M S Jour 166 36 (2024)
  3. Webb G M, Anco S C et al Rev. Mod. Plasma Phys. 8 (1) (2024)
  4. Fukumoto Ya, Zou R 2024 (3) (2024)
  5. Monteiro G M, Nair V P, Ganeshan S Phys. Rev. B 109 (17) (2024)
  6. Abanov A G, Cappelli A J. High Energ. Phys. 2024 (8) (2024)
  7. Ignatov A  M Bull. Lebedev Phys. Inst. 51 416 (2024)
  8. Kulyk K M, Yanovsky V V East Eur. J. Phys. (2) 134 (2024)
  9. Saut Je-C, Wang Yu Adv Cont Discr Mod 2024 (1) (2024)
  10. Markov Yu A, Markova M A, Markov N Yu Nuclear Physics A 1048 122903 (2024)
  11. Gurchenkov A A, Matveev I A Physics 6 426 (2024)
  12. Pezzutto P, Shrira V I J. Fluid Mech. 972 (2023)
  13. Knyazev D V Comp. Contin. Mech. 16 150 (2023)
  14. Sedletsky Yu V, Gandzha I S Proc. R. Soc. A. 479 (2277) (2023)
  15. Machado M G, Abanov A G, Ganeshan S SciPost Phys. 14 (5) (2023)
  16. Bibilova S A, Gubarev Y G Acta Appl Math 187 (1) (2023)
  17. Markov Yu A, Markova M  A, Markov N  Yu Int. J. Mod. Phys. A 38 (02) (2023)
  18. Smirnov S, Podivilov E, Sturman B Photonics 10 640 (2023)
  19. (11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES) Vol. 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCESStudy of the stability for three-dimensional states of dynamic equilibrium of the electron Vlasov-Poisson gasYuriy G.GubarevYangLiu2872 (2023) p. 060024
  20. Zheltikov A M Optics Communications 546 129766 (2023)
  21. Abrashkin A A, Pelinovsky E N Theor Math Phys 215 599 (2023)
  22. Agafontsev D S, Kuznetsov E A et al Phys.-Usp. 65 189 (2022)
  23. Sedletsky Yu V, Gandzha I S Phys. Rev. E 106 (6) (2022)
  24. Markov Yu A, Markova M A, Markov N Yu Russ Phys J 64 2246 (2022)
  25. Ludu A Nonlinear Waves and Solitons on Contours and Closed Surfaces Springer Series In Synergetics Chapter 9 (2022) p. 203
  26. Abrashkin A A, Pelinovsky E N Uspekhi Fizicheskikh Nauk 192 491 (2022)
  27. [Abrashkin A A, Pelinovsky E N Phys. Usp. 65 453 (2022)]
  28. Kochurin E A, Kuznetsov E A Jetp Lett. 116 863 (2022)
  29. Wiegmann P B, Abanov A G J. High Energ. Phys. 2022 (6) (2022)
  30. Malkin V M, Fisch N J Phys. Rev. E 105 (4) (2022)
  31. Rumpf B, Lvov Yu V Fluids 7 122 (2022)
  32. Chong Ch L Physica D: Nonlinear Phenomena 433 133164 (2022)
  33. Gönül Ş, Özemir C Eur. Phys. J. Plus 137 (10) (2022)
  34. Webb G M, Anco S C et al J. Plasma Phys. 88 (4) (2022)
  35. Abanov A  G, Wiegmann P  B Phys. Rev. Lett. 128 (5) (2022)
  36. Gönül Ş, Özemir C Chaos, Solitons & Fractals 165 112807 (2022)
  37. Vakhnenko O O JNMP 24 250 (2021)
  38. Abali B E, Klunker A et al Z Angew Math Mech 101 (9) (2021)
  39. Grimberg G, Tassi E EPJ H 46 (1) (2021)
  40. Yang Sh, Xiong Sh et al ACM Trans. Graph. 40 1 (2021)
  41. Grosvenor K T, Hoyos C et al Phys. Rev. Research 3 (4) (2021)
  42. Spiller D, Brunk A et al J. Phys.: Condens. Matter 33 364001 (2021)
  43. Gu Ya-Ju, Bulanov S V High Pow Laser Sci Eng 9 (2021)
  44. Kopiev V F, Chernyshev S A Acoust. Phys. 67 83 (2021)
  45. Pavlov V P, Sergeev V M, Shamin R V Theor Math Phys 208 926 (2021)
  46. Shashikanth B N Dynamically Coupled Rigid Body-Fluid Flow Systems Chapter 6 (2021) p. 133
  47. Campolina C S, Mailybaev A A Nonlinearity 34 4684 (2021)
  48. Gubarev Yu G, Sun S J. Phys.: Conf. Ser. 1730 012069 (2021)
  49. Yang Sh, Xiong Sh et al ACM Trans. Graph. 40 1 (2021)
  50. Maltsev A Ya, Novikov S P J. Exp. Theor. Phys. 132 645 (2021)
  51. Yahalom A Symmetry 13 1632 (2021)
  52. Chong Ch L Journal Of Non-Newtonian Fluid Mechanics 292 104537 (2021)
  53. Zubarev N M, Zubareva O V J. Phys.: Conf. Ser. 1556 012014 (2020)
  54. Sedletsky Yu V, Gandzha I  S Phys. Rev. E 102 (2) (2020)
  55. Gürcan Ö D, Li Ya, Morel P Mathematics 8 530 (2020)
  56. Malkin V M, Fisch N J Phys. Rev. E 101 (2) (2020)
  57. Abanov A G, Can T et al Phys. Rev. Fluids 5 (10) (2020)
  58. Cullen J, Ivanov R European Journal Of Mechanics - B/Fluids 84 325 (2020)
  59. Piterbarg L I Theor Math Phys 202 412 (2020)
  60. Gültekin Ö, Gürcan Ö D Plasma Phys. Control. Fusion 62 025018 (2020)
  61. Machon T Proc. R. Soc. A. 476 20190851 (2020)
  62. Zubareva O V, Zubarev N M, Bobrov K E J. Phys.: Conf. Ser. 1556 012015 (2020)
  63. Xiong Sh, Yang Yu J. Fluid Mech. 895 (2020)
  64. Kuznetsov E A, Mikhailov E A J. Exp. Theor. Phys. 131 496 (2020)
  65. Gerdjikov V S, Smirnov A O, Matveev V B Eur. Phys. J. Plus 135 (8) (2020)
  66. Krishnaswami G S, Phatak S S et al 10 (2) (2020)
  67. Gubarev Yu G Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov’s Legacy Chapter 21 (2020) p. 161
  68. Yushkov V P Moscow Univ. Phys. 75 547 (2020)
  69. Yahalom A J. Phys.: Conf. Ser. 1194 012113 (2019)
  70. Yahalom A J. Phys.: Conf. Ser. 1416 012041 (2019)
  71. Abrashkin A J. Math. Fluid Mech. 21 (2) (2019)
  72. Khazanov E A, Mironov S Yu, Mourou G Uspekhi Fizicheskikh Nauk 189 1173 (2019) [Khazanov E A, Mironov S Yu, Mourou G Phys.-Usp. 62 1096 (2019)]
  73. Gubarev Yu G Plasma Res. Express 1 045008 (2019)
  74. Dyachenko A I, Lushnikov P M, Zakharov V E J. Fluid Mech. 869 526 (2019)
  75. (MODERN TREATMENT OF SYMMETRIES, DIFFERENTIAL EQUATIONS AND APPLICATIONS (Symmetry 2019)) Vol. MODERN TREATMENT OF SYMMETRIES, DIFFERENTIAL EQUATIONS AND APPLICATIONS (Symmetry 2019)Conservation laws in magnetohydrodynamics and fluid dynamics: Lagrangian approachGary M.WebbStephen C.Anco2153 (2019) p. 020024
  76. Abanov A G, Monteiro G M Phys. Rev. Lett. 122 (15) (2019)
  77. Sato N, Yamada M J. Fluid Mech. 876 896 (2019)
  78. McKeever B F, Rodrigues D R et al Phys. Rev. B 99 (5) (2019)
  79. Abrashkin A Deep Sea Research Part II: Topical Studies In Oceanography 160 3 (2019)
  80. Vedenyapin V V, Fimin N N, Chechetkin V M Comput. Math. And Math. Phys. 59 1816 (2019)
  81. Dullin H R, Meiss J D, Worthington J J. Phys. A: Math. Theor. 52 365501 (2019)
  82. Shen L Q, Zhou L F et al Phys. Rev. B 97 (22) (2018)
  83. Webb G Lecture Notes In Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsIntroduction946 Chapter 1 (2018) p. 1
  84. Kopiev V F, Chernyshev S A Acoust. Phys. 64 707 (2018)
  85. Vedenyapin V V, Andreeva A A, Vorobyeva V V Dokl. Math. 97 283 (2018)
  86. Webb G Lecture Notes In Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsHelicity in Fluids and MHD946 Chapter 3 (2018) p. 21
  87. Vakhnenko O O 59 (5) (2018)
  88. Webb G Lecture Notes In Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsMulti-Symplectic Clebsch Approach946 Chapter 9 (2018) p. 167
  89. Buffoni B, Groves M D, Wahlén E Arch Rational Mech Anal 228 773 (2018)
  90. Krafft C, Volokitin A S 25 (10) (2018)
  91. Abrashkin A A, Pelinovsky E N Uspekhi Fizicheskikh Nauk 188 329 (2018) [Abrashkin A A, Pelinovsky E N Phys.-Usp. 61 307 (2018)]
  92. Vedenyapin V V, Kazakova T S et al Dokl. Math. 97 240 (2018)
  93. Vakhnenko O O Lett Math Phys 108 1807 (2018)
  94. Webb G Lecture Notes In Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsHamiltonian Approach946 Chapter 8 (2018) p. 137
  95. Campolina C S, Mailybaev A A Phys. Rev. Lett. 121 (6) (2018)
  96. Webb G Lecture Notes In Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsAdvected Invariants946 Chapter 5 (2018) p. 53
  97. Yahalom A Fluid Dyn. Res. 50 011406 (2018)
  98. Yahalom A Springer Proceedings In Mathematics & Statistics Vol. Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 2Metage Symmetry Group of Non-barotropic Magnetohydrodynamics and the Conservation of Cross Helicity255 Chapter 30 (2018) p. 387
  99. Gelash A A, L’vov V S, Zakharov V E J. Fluid Mech. 831 128 (2017)
  100. Nishiyama S, da Providência J Int. J. Mod. Phys. E 26 1750020 (2017)
  101. Christov I C, Kress T, Saxena A Int. J. Mod. Phys. B 31 1742008 (2017)
  102. Banerjee D, Souslov A et al Nat Commun 8 (1) (2017)
  103. Camassa R, Falqui G, Ortenzi G Nonlinearity 30 466 (2017)
  104. Sen A Fluids 2 28 (2017)
  105. Dutykh D, Clamond D et al Math. Model. Nat. Phenom. 12 23 (2017)
  106. Chern A, Knöppel F et al ACM Trans. Graph. 36 1 (2017)
  107. Horikis T P, Frantzeskakis D J Phys. Rev. Lett. 118 (24) (2017)
  108. Kuznetsov E A Jetp Lett. 105 125 (2017)
  109. Miloshevich G, Lingam M, Morrison P J New J. Phys. 19 015007 (2017)
  110. Vakhnenko O O Ukr. J. Phys. 62 271 (2017)
  111. Webb G M, Anco S C J. Phys. A: Math. Theor. 50 255501 (2017)
  112. Benilov E S, Benilov M S Phys. Rev. E 96 (4) (2017)
  113. Vakhnenko O O Applied Mathematics Letters 64 81 (2017)
  114. Yahalom A Geophysical & Astrophysical Fluid Dynamics 111 131 (2017)
  115. Besse N, Frisch U J. Fluid Mech. 825 412 (2017)
  116. Cherubini Ch, Filippi S Commun. Comput. Phys. 19 758 (2016)
  117. Vakhnenko O O 57 (11) (2016)
  118. Yahalom A J. Plasma Phys. 82 (2) (2016)
  119. Gu Y J, Klimo O et al Phys. Rev. E 93 (1) (2016)
  120. Matsuno Y Proc. R. Soc. A. 472 20160127 (2016)
  121. Clamond D, Dutykh D Lecture Notes In Physics Vol. New Approaches to Nonlinear WavesModeling Water Waves Beyond Perturbations908 Chapter 7 (2016) p. 197
  122. Romanova N N, Chkhetiani O G, Yakushkin I G J. Exp. Theor. Phys. 122 902 (2016)
  123. Ludu A Boundaries of a Complex World Springer Series In Synergetics Chapter 1 (2016) p. 3
  124. Ludu A Boundaries of a Complex World Springer Series In Synergetics Chapter 9 (2016) p. 245
  125. Grebenev V N, Oberlack M et al 57 (10) (2016)
  126. Webb G M, Anco S C J. Phys. A: Math. Theor. 49 075501 (2016)
  127. Onorato M, Baronio F et al Lecture Notes In Physics Vol. Rogue and Shock Waves in Nonlinear Dispersive MediaHydrodynamic and Optical Waves: A Common Approach for Unidimensional Propagation926 Chapter 1 (2016) p. 1
  128. Gu Y J, Yu Q et al High Pow Laser Sci Eng 4 (2016)
  129. Amiranashvili Sh Lecture Notes In Physics Vol. New Approaches to Nonlinear WavesHamiltonian Framework for Short Optical Pulses908 Chapter 6 (2016) p. 153
  130. Hall M J W, Reginatto M Fundamental Theories Of Physics Vol. Ensembles on Configuration SpaceIntroduction184 Chapter 1 (2016) p. 3
  131. (Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers II) Vol. Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers IIMagnetic reconnection research with petawatt-class lasersGeorgKornLuis O.SilvaYanjunGuOndřejKlimoDeepakKumarYueLiuSushilSinghSergei V.BulanovTimur Z.EsirkepovStefanWeberGeorgKorn9515 (2015) p. 95151H
  132. Tanehashi K, Yoshida Z J. Phys. A: Math. Theor. 48 495501 (2015)
  133. Aseeva N V, Gromov E M, Tyutin V V Radiophys Quantum El 58 209 (2015)
  134. Gürcan Ö D, Diamond P H J. Phys. A: Math. Theor. 48 293001 (2015)
  135. Kalashnikova A M, Kimel A V, Pisarev R V Uspekhi Fizicheskikh Nauk 185 1064 (2015) [Kalashnikova A M, Kimel A V, Pisarev R V Phys.-Usp. 58 969 (2015)]
  136. Webb G M, McKenzie J F, Zank G P J. Plasma Phys. 81 (6) (2015)
  137. Yushkov V P Moscow Univ. Phys. 70 217 (2015)
  138. Webb G M 56 (5) (2015)
  139. Moroz S, Hoyos C Phys. Rev. B 91 (6) (2015)
  140. Ignatov A M Plasma Phys. Rep. 41 783 (2015)
  141. Monteiro G M, Abanov A G, Nair V  P Phys. Rev. D 91 (12) (2015)
  142. Gu Y J, Klimo O et al 22 (10) (2015)
  143. Webb G M, McKenzie J F, Zank G P J. Plasma Phys. 80 707 (2014)
  144. Ruban V P Jetp Lett. 99 124 (2014)
  145. Camassa R, Chen S et al J. Fluid Mech. 743 534 (2014)
  146. Camassa R, Falqui G et al J. Phys.: Conf. Ser. 482 012006 (2014)
  147. Perin M, Chandre C et al Annals Of Physics 348 50 (2014)
  148. Webb G M, Dasgupta B et al J. Phys. A: Math. Theor. 47 095502 (2014)
  149. Frisch U, Villone B EPJ H 39 325 (2014)
  150. Frewer M, Oberlack M, Grebenev V N Math Phys Anal Geom 17 3 (2014)
  151. Turchetti G, Sinigardi S, Londrillo P Eur. Phys. J. D 68 (12) (2014)
  152. Prakash Ja, Lavrenteva O M, Nir A 26 (7) (2014)
  153. Zubarev N M, Kuznetsov E A J. Exp. Theor. Phys. 119 169 (2014)
  154. Webb G M, Dasgupta B et al J. Phys. A: Math. Theor. 47 095501 (2014)
  155. Kovriguine D A Arch Appl Mech 84 159 (2014)
  156. Sultana Sh, Rahman Z OJFD 03 75 (2013)
  157. Dvornikov M J. Phys. A: Math. Theor. 46 045501 (2013)
  158. Lyutikov M Phys. Rev. E 88 (5) (2013)
  159. Makarov V A, Petnikova V M et al Phys. Wave Phen. 21 264 (2013)
  160. Chandre C, de Guillebon L et al J. Phys. A: Math. Theor. 46 125203 (2013)
  161. Camassa R, Chen S et al J. Fluid Mech. 726 404 (2013)
  162. Abanov A G J. Phys. A: Math. Theor. 46 292001 (2013)
  163. Chandre C, Morrison P J, Tassi E Physics Letters A 376 737 (2012)
  164. Zakharov V E, Kuznetsov E A Uspekhi Fizicheskikh Nauk 182 569 (2012) [Zakharov V E, Kuznetsov E A Phys.-Usp. 55 535 (2012)]
  165. Lakhturov I, Adytia D, van Groesen E Wave Motion 49 309 (2012)
  166. Kulkarni M, Abanov A G Phys. Rev. A 86 (3) (2012)
  167. Gibbon J D, Holm D D Mathematical Aspects of Fluid Mechanics 1 9 (2012) p. 201
  168. Clamond D, Dutykh D Physica D: Nonlinear Phenomena 241 25 (2012)
  169. de Guillebon L, Chandre C Physics Letters A 376 3172 (2012)
  170. Dvornikov M Found Phys 42 1469 (2012)
  171. Webb G M, Hu Q et al J. Phys. A: Math. Theor. 45 025203 (2012)
  172. Sokolov V V, Fotov K N, Eminov P A Dokl. Phys. 56 467 (2011)
  173. Felderhof B U, Sokolov V V, Éminov P A 135 (14) (2011)
  174. Amiranashvili Sh, Demircan A Advances In Optical Technologies 2011 1 (2011)
  175. Nazarenko S V Lecture Notes In Physics Vol. Wave TurbulenceWave Turbulence Formalism825 Chapter 6 (2011) p. 67
  176. Kuznetsov E A, Dias F Physics Reports 507 43 (2011)
  177. Nazarenko S Lecture Notes In Physics Vol. Wave TurbulenceMagneto-Hydrodynamic Turbulence825 Chapter 14 (2011) p. 209
  178. Rassmusen A R, Sørensen M P et al Acta Appl Math 115 43 (2011)
  179. Rasmussen A R, Sørensen M P et al Mathematics In Industry Vol. Progress in Industrial Mathematics at ECMI 2008Analytical and Numerical Modelling of Thermoviscous Shocks and Their Interactions in Nonlinear Fluids Including Dissipation15 Chapter 159 (2010) p. 997
  180. Mathematics In Science And Engineering Vol. Numerical Time-Dependent Partial Differential Equations for Scientists and EngineersBibliography213 (2010) p. 273
  181. Brio M, Webb G M, Zakharian A R Mathematics In Science And Engineering Vol. Numerical Time-Dependent Partial Differential Equations for Scientists and EngineersProblems with Multiple Temporal and Spatial Scales213 (2010) p. 175
  182. Sokolov V V, Fotov K N, Eminov P A Russ Phys J 53 732 (2010)
  183. Zubarev N M, Zubareva O V Phys. Rev. E 82 (4) (2010)
  184. Amiranashvili Sh, Demircan A Phys. Rev. A 82 (1) (2010)
  185. Nakamura T, Bulanov S V et al Phys. Rev. Lett. 105 (13) (2010)
  186. Webb G M, Hu Q et al J. Geophys. Res. 115 (A10) (2010)
  187. Yahalom A Europhys. Lett. 89 34005 (2010)
  188. Ruban V P J. Exp. Theor. Phys. 111 776 (2010)
  189. Sokolov V V, Tolmachev V V, Éminov P A Dokl. Phys. 54 488 (2009)
  190. Zubarev N M Jetp Lett. 89 271 (2009)
  191. Gordeev A V, Losseva T V Plasma Phys. Rep. 35 118 (2009)
  192. Kharif Ch, Pelinovsky E, Slunyaev A Rogue Waves in the Ocean Advances In Geophysical And Environmental Mechanics And Mathematics Chapter 3 (2009) p. 33
  193. Dünweg B, Ladd A J C Advanced Computer Simulation Approaches for Soft Matter Sciences III Chapter 2 (2009) p. 89
  194. Kovalevskii M Yu, Kovalevsky M Yu i dr Teor. Mat. Fiz. 158 277 (2009) [Kovalevskii M Yu, Matskevich V T, Razumnyi A Ya Theor Math Phys 158 233 (2009)]
  195. Jin-Zhang P, Hong Ya, Yi T Chinese Phys. B 18 2364 (2009)
  196. Petnikova V M, Shuvalov V V Phys. Rev. E 79 (2) (2009)
  197. Levich E Old And New Concepts Of Physics 6 239 (2009)
  198. Gibbon J D Physica D: Nonlinear Phenomena 237 1894 (2008)
  199. Petnikova V M, Shuvalov V V Quantum Electron. 38 1135 (2008)
  200. Maksimov A O J. Exp. Theor. Phys. 106 355 (2008)
  201. YAHALOM ASHER, LYNDEN-BELL DONALD J. Fluid Mech. 607 235 (2008)
  202. Kalashnikova A M, Kimel A V et al Phys. Rev. B 78 (10) (2008)
  203. Radu E, Volkov M S Physics Reports 468 101 (2008)
  204. Shivamoggi B K, van Heijst G J F Physics Letters A 372 5688 (2008)
  205. Zubarev N M J. Exp. Theor. Phys. 107 668 (2008)
  206. KUZNETSOV E A J. Fluid Mech. 600 167 (2008)
  207. Romanova N N Izv. Atmos. Ocean. Phys. 44 53 (2008)
  208. Sedletsky Yu V Jetp Lett. 86 502 (2007)
  209. Agafontsev D S, Dias F, Kuznetsov E A Physica D: Nonlinear Phenomena 225 153 (2007)
  210. Romanova N N, Yakushkin I G Izv. Atmos. Ocean. Phys. 43 533 (2007)
  211. Gibbon Dzh, Gibbon J Usp. Mat. Nauk 62 47 (2007)
  212. Gutshabash E Sh J Math Sci 143 2765 (2007)
  213. Petnikova V M, Shuvalov V V Phys. Rev. E 76 (4) (2007)
  214. Kuznetsov E A JNMP 13 64 (2006)
  215. Morrison P J Encyclopedia of Mathematical Physics (2006) p. 593
  216. Kalashnik M V, Ingel L Kh J. Exp. Theor. Phys. 103 141 (2006)
  217. Sedletsky Yu V J. Phys. A: Math. Gen. 39 L529 (2006)
  218. Protogenov A P Uspekhi Fizicheskikh Nauk 176 689 (2006)
  219. Agafontsev D S, Dias F, Kuznetsov E A Jetp Lett. 83 201 (2006)
  220. Belmont G, Sahraoui F, Rezeau L Advances In Space Research 37 1503 (2006)
  221. Sedletsky Yu V Physics Letters A 343 293 (2005)
  222. Eshraghi H, Abedini Y 46 (4) (2005)
  223. Dolzhanskii F V Uspekhi Fizicheskikh Nauk 175 1257 (2005)
  224. Ignatov A M Plasma Phys. Rep. 30 44 (2004)
  225. Kats A V Phys. Rev. E 69 (4) (2004)
  226. Khomeriki R, Tkeshelashvili L J. Opt. Soc. Am. B 21 2175 (2004)
  227. Ruban V P, Senchenko S L Phys. Scr. 69 227 (2004)
  228. Kuznetsov E A, Passot T, Sulem P L 11 1410 (2004)
  229. Ruban V P Phys. Rev. E 70 (6) (2004)
  230. Prix R Phys. Rev. D 69 (4) (2004)
  231. Dobrokhotov S Yu, Dobrokhotov S Yu i dr Teor. Mat. Fiz. 139 62 (2004)
  232. Hall M J W J. Phys. A: Math. Gen. 37 7799 (2004)
  233. Isaev L S, Protogenov A P J. Exp. Theor. Phys. 96 1140 (2003)
  234. Ruban V P Phys. Rev. E 67 (6) (2003)
  235. Kats A V Jetp Lett. 77 657 (2003)
  236. Dellar P J 10 581 (2003)
  237. Ruban V P Phys. Rev. E 68 (4) (2003)
  238. Sedletsky Yu V J. Exp. Theor. Phys. 97 180 (2003)
  239. Sahraoui F, Belmont G, Rezeau L 10 1325 (2003)
  240. Annenkov S Yu, Romanova N N Dokl. Phys. 48 441 (2003)
  241. Ruban V P, Juul R J Phys. Rev. E 68 (5) (2003)
  242. Garnier J, Cherfils-Clérouin C, Holstein P -A Phys. Rev. E 68 (3) (2003)
  243. Holm D D Geometry, Mechanics, and Dynamics Chapter 4 (2002) p. 169
  244. Protogenov A P, Verbus V A Jetp Lett. 76 53 (2002)
  245. Ruban V P Phys. Rev. E 65 (4) (2002)
  246. Dellar P J 9 1130 (2002)
  247. Ruban V P, Podolsky D I, Rasmussen J J Phys. Rev. E 63 (5) (2001)
  248. Romanova N N, Yakushkin I G Dokl. Phys. 46 742 (2001)
  249. Ruban V P, Podolsky D I Phys. Rev. D 64 (4) (2001)
  250. Ruban V P Phys. Rev. E 64 (3) (2001)
  251. Zubarev N M, Zubareva O V Tech. Phys. 46 806 (2001)
  252. Kats A V Physica D: Nonlinear Phenomena 152-153 459 (2001)
  253. Bogdanov A V, Stankova E N Lecture Notes In Computer Science Vol. High-Performance Computing and NetworkingThe Use of Intrinsic Properties of Physical System for Derivation of High-Performance Computational Algorithms2110 Chapter 21 (2001) p. 204
  254. Kuznetsov E A J. Exp. Theor. Phys. 93 1052 (2001)
  255. Zaiko Yu N Tech. Phys. Lett. 26 889 (2000)
  256. Dobrokhotov S Yu, Dobrokhotov S Yu Teor. Mat. Fiz. 125 491 (2000)
  257. Kuznetsov E A, Ruban V P Phys. Rev. E 61 831 (2000)
  258. Graham C R, Henyey F S 12 744 (2000)
  259. Ruban V P Phys. Rev. D 62 (12) (2000)
  260. V S D Physica D: Nonlinear Phenomena 139 186 (2000)
  261. Kuznetsov E A, Zakharov V E Lecture Notes In Physics Vol. Nonlinear Science at the Dawn of the 21st CenturyNonlinear Coherent Phenomena in Continuous Media542 Chapter 1 (2000) p. 3
  262. Kuznetsov E A, Ruban V P J. Exp. Theor. Phys. 91 775 (2000)
  263. Son D T Phys. Rev. Lett. 84 3771 (2000)
  264. Ruban V P Phys. Rev. E 62 4950 (2000)
  265. Rylov Yu A 40 256 (1999)
  266. Yoshikawa T, Balk A M Physics Letters A 251 184 (1999)
  267. Kuznetsov E A, Ruban V P J. Exp. Theor. Phys. 88 492 (1999)
  268. Kuznetsov E A J. Exp. Theor. Phys. 89 163 (1999)
  269. Kuznetsov E A Optical Solitons: Theoretical Challenges and Industrial Perspectives Chapter 3 (1999) p. 31
  270. Ruban V P J. Exp. Theor. Phys. 89 299 (1999)
  271. Kuznetsov E A, Ruban V P Lecture Notes In Physics Vol. Nonlinear MHD Waves and TurbulenceDynamics of Vortex and Magnetic Lines in Ideal Hydrodynamics and MHD536 Chapter 14 (1999) p. 346
  272. Kuznetsov E A, Ruban V P Jetp Lett. 67 1076 (1998)
  273. Berning M, Rubenchik A M 10 1564 (1998)
  274. Vol. MMET Conference Proceedings. 1998 International Conference on Mathematical Methods in Electromagnetic Theory. MMET 98 (Cat. No.98EX114)Hamiltonian approach to the problem of wave collapseV.V.Gushchin1 (1998) p. 266
  275. Zakharov V E, Kuznetsov E A J. Exp. Theor. Phys. 86 1035 (1998)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions