Issues

 / 

1996

 / 

July

  

Reviews of topical problems


Self-consistent theory of localization within site and wave approaches


Sumy State University, ul. Rimskogo-Korsakova 2, Sumy, 244007, Ukraine

The mutual complementarity of the Anderson site representation and the Edwards wave approach is considered within the frame work of the quantum-statistical theory. The former is used for the description of one-particle excitations. Based on the permutational symmetry analysis of the wave function, it is shown that the symmetry of the Anderson Hamiltonian exceeds that of the space of states. Transition to an extended state is represented within the framework of the quasi-averages theory as a phase transition of order 2+δ , where δ rightarrow 0 is an addition caused by the appearance of a logarithm. A study of the collective mode is possible within the framework of the Edwards wave representation. The examination is reduced to determining the charge distribution autocorrelation function which is expressed in terms of higher correlators of current density and generalised force, using the Mori technique. Dependences of the conductivity and polarizability on the level spread width and Fermi energy are determined. The form of the frequency dependence of the conductivity as well as the spatial dispersion pattern are analyzed.

Fulltext pdf (668 KB)
Fulltext is also available at DOI: 10.1070/PU1996v039n07ABEH000154
PACS: 73.20.Jc, 71.25.-s, 67.40.Db (all)
DOI: 10.1070/PU1996v039n07ABEH000154
URL: https://ufn.ru/en/articles/1996/7/a/
A1996VC59800001
Citation: Olemskoi A I "Self-consistent theory of localization within site and wave approaches" Phys. Usp. 39 651–668 (1996)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Олемской А И «Самосогласованная теория локализации в узельном и волновом представлениях» УФН 166 697–715 (1996); DOI: 10.3367/UFNr.0166.199607a.0697

References (39) ↓ Cited by (3) Similar articles (20)

  1. Belitz D, Kirkpatrick T R Rev. Mod. Phys. 66 261 (1994)
  2. Anderson P W Phys. Rev. 109 1492 (1958)
  3. Edwards S F Phil. Mag. 3 1020 (1958)
  4. Wegner F Z. Phys. B 35 207 (1979)
  5. Thouless D J Phys. Rev. Lett. 39 1167 (1977)
  6. Abrahams E et al. Phys. Rev. Lett. 42 673 (1979)
  7. Efetov K B, Larkin A I, Khmel’nitskii D E Zh. Eksp. Teor. Fiz. 79 1120 (1980) [Sov. Phys. JETP 52 568 (1980)]
  8. Schafer L, Wegner F Z. Phys. B 38 113 (1980)
  9. Efetov K B Zh. Eksp. Teor. Fiz. 82 872 (1982) [Sov. Phys. JETP 55 514 (1982)]
  10. Efetov K B Adv. Phys. 32 53 (1983)
  11. Gor’kov L P, Larkin A I, Khmel’nitskii D E Pis’ma Zh. Eksp. Teor. Fiz. 30 248 (1979) [JETP Lett. 30 228 (1979)]
  12. Vollhardt D, Wolfle P Phys. Rev. B 22 4666 (1980)
  13. Kotov E A, Sadovskii M V Z. Phys. B 51 17 (1983)
  14. Kopp T J. Phys. C 17 1897 (1984)
  15. Al’tshuler B L et al. Kvantovaya Teoriya Tverdogo Tela (Quantum Theory of Solids, Eds I M Lifshits, Moscow: Mir, 1982) p. 130
  16. Gotze W Fazovye Perekhody Zhidkost’-Steklo (Fluid-Glass Phase Transitions, Moscow: Nauka, 1992)
  17. Gotze W Phil. Mag. B 43 219 (1981)
  18. Olemskoi A I Fiz. Tverd. Tela (Leningrad) 23 3440 (1981)
  19. Olemskoi A I Phys. Stat. Solidi (b) 160 569 (1990)
  20. Shriffer J Teoriya Sverkhprovodimosti (The Theory of Superconductivity, Moscow: Nauka, 1970)
  21. March N, Sampanthar S The Many-Body Problem in Quantum Mechanics (New York: Pover Publ., 1995)
  22. Higgs P W Phys. Rev. Lett. 13 508 (1964)
  23. Ginzburg S L Neobratimye Yavleniya v Spinovykh Steklakh (Irreversible Phenomena in Spin Glasses, Moscow: Nauka, 1989)
  24. Bogolyubov N N, in Statisticheskaya Fizika i Kvantovaya Teoriya Polya (Statistical Physics and Quantum Field Theory, Moscow: Nauka, 1973) p. 7
  25. Aharony A, Imry Y J. Phys. C 10 L487 (1977)
  26. Landau L D, Lifshits E M Statisticheskaya Fizika. Chast’ 1 (Statistical Physics. Part 1, Moscow: Nauka, 1976) [Translated into English (Oxford: Pergamon Press, 1980)]
  27. Licciardello D C, Economou E N Phys. Rev. B 11 3697 (1975)
  28. Spravochnik po Spetsialnym Funktsiyam (Red M Abramovits, I Stiganay, Reference Book on Special Functions, Eds M Abramovits, I Stigan, Moscow: Nauka, 1979)
  29. Abrikosov A A, Gor’kov L P, Dzyaloshinskii I E Quantum Field Theoretical Methods in Statistical Physics (Oxford, New York: Pergamon Press, 1995) [Translated into Russian (Moscow: Fismatgiz, 1962)]
  30. Zwanzig R J. Chem. Phys. 33 1338 (1960); Phys. Rev. 124 983 (1961); Mori H Progr. Theor. Phys. 33 423 (1965)
  31. Pines D, Noziere F The Theory of Quantum Liquids (New York: Wiley, 1966) [Translated into Russian (Moscow: Mir, 1967)]
  32. Shklovsky B I, Efros A L Elektronnye Svoistva Legirovannykh Provodnikov (Electron Properties of Alloyed Conductors, Moscow: Nauka, 1979)
  33. Gotze W, Leutheusser E, Yip S Phys. Rev. A 23 2634 (1981)
  34. Anderson P W, in Localization, Interaction and Transport Phenomena (Eds B Kramer, G Bergmann, Y Bruynserade, Berlin, Heidelberg, New York: Springer, 1985)
  35. Gotze W, Narcisi C Z. Phys. B 78 21 (1990)
  36. Horsthemke W, Lefever R Noise Induced Transitions Theory and Applications in Physics, Chemistry, and Biology (Berlin, New York: Springer-Verlag, 1984) [Translated into Russian (Moscow: Mir, 1987)]
  37. Olemskoi A I, Flat A Ya Usp. Fiz. Nauk 163 (12) 1 (1993) [Phys. Usp. 36 1087 (1993)]
  38. Haken H Synergetics (Berlin, New York: Springer-Verlag, 1978) [Translated into Russian (Moscow: Mir, 1980)]
  39. Olemskoi A I, Koplyk I V, Koloskov A A Fiz. Tverd. Tela (Leningrad) 37 1198 (1995)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions