Issues

 / 

1996

 / 

March

  

Methodological notes


Galilean transformations and evolution of autowave fronts in external fields

 a, b,  a
a MIREA - Russian Technological University, prosp. Vernadskogo 78, Moscow, 119454, Russian Federation
b Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation

We consider autowave regimes in two-dimensional excitable media in the presence of an external electric field, using Galilean transformations in the reaction-diffusion equations. It is shown that the transformation properties of these equations lead to some general relations for the autowave front and vortex drift velocities, independently of the concrete form of nonlinear terms in the equations. The general field dependence of the critical autowave characteristics is determined. Simple kinematic method discussed in this work is applicable for studying autowave evolution in three-dimensional and multicomponent excitable media.

Fulltext pdf (318 KB)
Fulltext is also available at DOI: 10.1070/PU1996v039n03ABEH000139
PACS: 05.50.+q, 05.70.Ln, 82.40.−g, 87.10.+e (all)
DOI: 10.1070/PU1996v039n03ABEH000139
URL: https://ufn.ru/en/articles/1996/3/e/
A1996UL16500005
Citation: Davydov V A, Morozov V G "Galilean transformations and evolution of autowave fronts in external fields" Phys. Usp. 39 305–311 (1996)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Давыдов В А, Морозов В Г «Галилеевы пpеобpазования и pаспpостpанение автоволновых фpонтов во внешних полях» УФН 166 327–334 (1996); DOI: 10.3367/UFNr.0166.199603e.0327

References (26) Cited by (5) Similar articles (20) ↓

  1. G.A. Martynov “Nonequilibrium statistical mechanics, transport equations, and the second law of thermodynamicsPhys. Usp. 39 1045–1070 (1996)
  2. G. Oppen “Objects and environmentPhys. Usp. 39 617–622 (1996)
  3. A.B. Brailovskii, V.L. Vaks, V.V. Mityugov “Quantum models of relaxationPhys. Usp. 39 745–750 (1996)
  4. S.L. Sobolev “Local non-equilibrium transport modelsPhys. Usp. 40 1043–1053 (1997)
  5. I.E. Mazets “Kinetic equation including wave function collapsesPhys. Usp. 41 505–507 (1998)
  6. S.N. Semenov, M.E. Schimpf “Mass transport thermodynamics in nonisothermal molecular liquid mixturesPhys. Usp. 52 1045–1054 (2009)
  7. Yu.L. Klimontovich “Relative ordering criteria in open systemsPhys. Usp. 39 1169–1179 (1996)
  8. Ya.M. Blanter, M.I. Kaganov, D.V. Posvyanskii “De Haas-van Alphen effect as a first-order electronic topological transitionPhys. Usp. 38 203–209 (1995)
  9. B.B. Kadomtsev “Classical and quantum irreversibilityPhys. Usp. 38 923–929 (1995)
  10. V.V. Brazhkin, R.N. Voloshin et alPhase equilibria in partially open systems under pressure: the decomposition of stoichiometric GeO2 oxidePhys. Usp. 46 1283–1289 (2003)
  11. V.B. Priezzhev “The dimer problem and the Kirchhoff theoremSov. Phys. Usp. 28 1125–1135 (1985)
  12. R.P. Poplavskii “Maxwell demon and the correspondence between information and entropySov. Phys. Usp. 22 371–380 (1979)
  13. B.M. Bolotovskii, V.A. Davydov, V.E. Rok “The emission of electromagnetic waves in the case of a smooth variation of parameters of a radiating systemSov. Phys. Usp. 25 167–175 (1982)
  14. B.M. Bolotovskii, V.A. Davydov, V.E. Rok “Radiation of electromagnetic waves on instantaneous change of the state of the radiating systemSov. Phys. Usp. 21 865–872 (1978)
  15. I.I. Abbasov, B.M. Bolotovskii, V.A. Davydov “High-frequency asymptotic behavior of radiation spectra of moving charges in classical electrodynamicsSov. Phys. Usp. 29 788–796 (1986)
  16. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  17. B.M. Bolotovskii, A.V. Serov “On the force line representation of radiation fieldsPhys. Usp. 40 1055–1059 (1997)
  18. A.A. Rukhadze, N.N. Sobolev, V.V. Sokovikov “Similarity relations for low-temperature nonisothermal dischargesSov. Phys. Usp. 34 (9) 827–829 (1991)
  19. I.Ya. Brusin “A topological approach to the determination of macroscopic field vectorsSov. Phys. Usp. 30 60–63 (1987)
  20. G.A. Markov, A.S. Belov “Demonstration of nonlinear wave phenomena in the plasma of a laboratory model of an ionospheric-magnetospheric density ductPhys. Usp. 53 703–712 (2010)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions