Issues

 / 

1995

 / 

July

  

Special issue


Ab initio calculations of lattice dynamics of crystals

 a,  b
a Max-Planck Institut für Festkörperforschung, Stuttgart, Germany
b Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

A review is given of the use of the density functional theory in calculations of the lattice dynamics of crystals. The approach is based on calculation, in the first order in nuclear displacements, of changes in the potential and charge density. This is done using the linear response theory and the linear muffin-tin (MT) orbitals. This makes it possible to treat in a unified manner both simple systems with almost-free electrons and transition metals. The suitability of the method is demonstrated by calculations of the phonon dispersion curves of Nb and Mo. The calculated results are found to be in good agreement with the experimental data.

Fulltext is available at IOP
PACS: 63.20.Dj, 71.25.Cx, 71.25.Pi
DOI: 10.1070/PU1995v038n07ABEH000096
URL: https://ufn.ru/en/articles/1995/7/d/
Citation: Savrasov S Yu, Maksimov E G "Ab initio calculations of lattice dynamics of crystals" Phys. Usp. 38 737–759 (1995)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Саврасов С Ю, Максимов Е Г «Расчеты динамики решетки кристаллов из первых принципов» УФН 165 773–797 (1995); DOI: 10.3367/UFNr.0165.199507d.0773

References (53) Cited by (26) Similar articles (4) ↓

  1. E.G. Maksimov “Theoretical investigations of the ferroelectric transition52 603–614 (2009)
  2. V.L. Ginzburg, I.M. Dremin et alSpecial session of the Uspekhi Fizicheskikh Nauk Editorial Board celebrating the 90th anniversary of the journal (19 November 2008)52 529–529 (2009)
  3. L.P. Gor’kov “Lattice and magnetic effects in doped manganites41 589–594 (1998)
  4. L.B. Ioffe, A.J. Millis “Non-Fermi-liquid metals41 595 (1998)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions