Issues

 / 

1995

 / 

June

  

Methodological notes


Regular and quasiregular spectra of disordered layer structures


Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

Two examples of problems solvable by statistical optics methods are considered. They are quite clear, they can be interpreted in a transparent manner, and they do not require time-consuming calculations. It is shown how the solution of the first problem — the influence of random variations of the optical thickness of a Fabry-Perot interferometer on its transmission spectra — helps to solve the second promlem: the ’mystery’ of the experimental spectra of polydomain KDP crystals. These examples may be useful in tackling other statistical problems.

Fulltext pdf (623 KB)
Fulltext is also available at DOI: 10.1070/PU1995v038n06ABEH000093
PACS: 05.40.+j, 07.60.Ly, 78.66.−w, 77.84.Fa (all)
DOI: 10.1070/PU1995v038n06ABEH000093
URL: https://ufn.ru/en/articles/1995/6/e/
A1995RL93800005
Citation: Belinskii A V "Regular and quasiregular spectra of disordered layer structures" Phys. Usp. 38 653–664 (1995)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Белинский А В «Регулярные и квазирегулярные спектры в разупорядоченных слоистых структурах» УФН 165 691–702 (1995); DOI: 10.3367/UFNr.0165.199506e.0691

References (21) Cited by (11) Similar articles (20) ↓

  1. Yu.L. Klimontovich “What are stochastic filtering and stochastic resonance?Phys. Usp. 42 37–44 (1999)
  2. N.N. Malov, A.N. Kozlova “Demonstration of Michelson interferometer operating with 3-cm electromagnetic wavesSov. Phys. Usp. 11 604–605 (1969)
  3. B.Sh. Perkal’skis, V.L. Larin “Home made Michelson interferometer for educational purposesSov. Phys. Usp. 7 476–477 (1964)
  4. B.Sh. Perkal’skis, V.L. Larin “A DEMONSTRATION FABRY-PEROT INTERFEROMETERSov. Phys. Usp. 6 326–328 (1963)
  5. T.S. Velichkina, O.A. Shustin, N.A. Yakovlev “The Michelson interferometer as an apparatus for lecture demonstrationsSov. Phys. Usp. 4 523–524 (1961)
  6. T.S. Velichkina, I.A. Yakovlev “A special case of Brownian motion and Einstein’s lawPhys. Usp. 40 103–104 (1997)
  7. G.B. Malykin “The Sagnac effect: correct and incorrect explanationsPhys. Usp. 43 1229 (2000)
  8. G.S. Egorov, S.N. Mensov, N.S. Stepanov “Lecture demonstrations on the interference of partially coherent lightSov. Phys. Usp. 22 757–759 (1979)
  9. A.A. Andronov, Yu.A. Ryzhov “An infinity of the classical theory of fluctuations in a nondegenerate electron gasSov. Phys. Usp. 21 873–878 (1978)
  10. B.Sh. Perkal’skis, V.L. Larin et alClassroom installation for the observation of the Doppler phenomenon with the aid of a laserSov. Phys. Usp. 15 121–123 (1972)
  11. Ya.E. Amstislavskii “Lecture demonstration of equal-inclination interference fringesSov. Phys. Usp. 11 768–768 (1969)
  12. B.Sh. Perkal’skis “A Lummer–Gehrcke plate for instructional purposesSov. Phys. Usp. 7 330–330 (1964)
  13. B.Sh. Perkal’skis “Some physics demonstrationSov. Phys. Usp. 6 939–940 (1964)
  14. A.V. Belinskii “Bell’s paradoxes without the introduction of hidden variablesPhys. Usp. 37 413–419 (1994)
  15. A.V. Belinskii “Bell’s theorem without the hypothesis of localityPhys. Usp. 37 219–222 (1994)
  16. A.V. Belinskii “Bell’s theorem for trichotomic observablesPhys. Usp. 40 305–316 (1997)
  17. A.V. Belinskii, A.S. Chirkin “Bernstein’s paradox of entangled quantum statesPhys. Usp. 56 1126–1131 (2013)
  18. A.V. Belinsky, M.Kh. Shulman “Quantum nature of a nonlinear beam splitterPhys. Usp. 57 1022–1034 (2014)
  19. A.V. Belinsky, A.A. Klevtsov “Nonlocal classical "realism" and quantum superposition as the nonexistence of definite pre-measurement values of physical quantitiesPhys. Usp. 61 313–319 (2018)
  20. A.V. Belinsky “On David Bohm's 'pilot-wave' conceptPhys. Usp. 62 1268–1278 (2019)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions