Issues

 / 

1995

 / 

June

  

Reviews of topical problems


Fractals, topological defects, and confinement in lattice gauge theories


Russian Federation State Scientific Center ‘A.I. Alikhanov Institute of Theoretical and Experimental Physics’, ul. Bolshaya Cheremushkinskaya 25, Moscow, 117259, Russian Federation

Topological defects — monopoles, vortices, and strings — are discussed. It is shown that these objects form clusters with a nonintegral dimension, i.e., they are fractals. The fractal dimension reflects the physical properties of a system. In particular, studies of monopole current clusters in U(1) and SU(2) lattice gauge theories make it possible to identify the confinement mechanism. In the confinement phase the current lines of a magnetic monopole form a percolating cluster and these lines are so dense that their dimension exceeds unity, whereas in the deconfinement phase their dimension is trivial: it is equal to unity. It is also shown that the string tension is proportional to the dimension of extended monopole currents. This is in agreement with a confinement model based on the condensation of magnetic monopoles into a superconducting phase. A string between a quark and an antiquark is then analogous to an Abrikosov vortex in a superconductor. An account is given of the application of the theory of fractals in the problem of gauge fixing in lattice gauge theories. It is also demonstrated that, in SU(2) gluodynamics, domains of the deconfinement phase have a nonintegral dimension near a phase transition point. Apart from monopoles, the review deals also with the properties of vortex and string clusters in three-dimensional and four-dimensional XY models. The corresponding physical objects are vortices in liquid helium and ’global cosmic strings’.

Fulltext pdf (1013 KB)
Fulltext is also available at DOI: 10.1070/PU1995v038n06ABEH000090
PACS: 11.15.Ha, 14.80.Hv, 74.20.De, 64.40.-w (all)
DOI: 10.1070/PU1995v038n06ABEH000090
URL: https://ufn.ru/en/articles/1995/6/b/
A1995RL93800002
Citation: Polikarpov M I "Fractals, topological defects, and confinement in lattice gauge theories" Phys. Usp. 38 591–607 (1995)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Поликарпов М И «Фракталы, топологические дефекты и невылетание в решеточных калибровочных теориях» УФН 165 627–644 (1995); DOI: 10.3367/UFNr.0165.199506b.0627

References (79) Cited by (14) Similar articles (20) ↓

  1. V.G. Bornyakov, M.I. Polikarpov et alColor confinement and hadron structure in lattice chromodynamicsPhys. Usp. 47 17–35 (2004)
  2. A.A. Migdal “Stochastic quantization of field theorySov. Phys. Usp. 29 389–411 (1986)
  3. K.N. Mukhin, O.O. Patarakin “Δ isobar in nuclei (review of experimental data)Phys. Usp. 38 803–844 (1995)
  4. V.A. Matveev, V.A. Rubakov et alNonconservation of baryon number under extremal conditionsSov. Phys. Usp. 31 916–939 (1988)
  5. I.M. Dremin “Quantum chromodynamics and multiplicity distributionsPhys. Usp. 37 715–736 (1994)
  6. D.S. Kuz’menko, Yu.A. Simonov, V.I. Shevchenko “Vacuum, confinement, and QCD strings in the vacuum correlator methodPhys. Usp. 47 1–15 (2004)
  7. Yu.M. Makeenko “The Monte Carlo method in lattice gauge theoriesSov. Phys. Usp. 27 401–430 (1984)
  8. M.Yu. Kagan, A.V. Turlapov “BCS—BEC crossover, collective excitations, and hydrodynamics of superfluid quantum fluids and gasesPhys. Usp. 62 215–248 (2019)
  9. I.M. Dremin “Correlations and fluctuations in multiparticle productionSov. Phys. Usp. 33 (8) 647–662 (1990)
  10. I.I. Roizen, E.L. Feinberg, O.D. Chernavskaya “Color deconfinement and subhadronic matter: phase states and the role of constituent quarksPhys. Usp. 47 427–446 (2004)
  11. L.V. Prokhorov, S.V. Shabanov “Phase space of mechanical systems with a gauge groupSov. Phys. Usp. 34 (2) 108–140 (1991)
  12. R.S. Gekht “Magnetic states and phase transitions in frustrated triangular-lattice antiferromagnetsSov. Phys. Usp. 32 871–890 (1989)
  13. A.A. Katanin, V.Yu. Irkhin “Magnetic order and spin fluctuations in low-dimensional insulating systemsPhys. Usp. 50 613–635 (2007)
  14. A.I. Vainshtein, V.I. Zakharov et alABC of instantonsSov. Phys. Usp. 25 195–215 (1982)
  15. A.V. Batunin “Fractal analysis and Feigenbaum universality in hadron physicsPhys. Usp. 38 609–622 (1995)
  16. I.N. Khlyustikov, A.I. Buzdin “Localized superconductivity of twin metal crystalsSov. Phys. Usp. 31 409–433 (1988)
  17. D.A. Kirzhnits “General properties of electromagnetic response functionsSov. Phys. Usp. 30 575–587 (1987)
  18. A.P. Protogenov “Anyon superconductivity in strongly-correlated spin systemsSov. Phys. Usp. 35 (7) 535–571 (1992)
  19. V.I. Zakharov “Lattice SU(2) theory projected on scalar particlesPhys. Usp. 47 37–44 (2004)
  20. M.D. Frank-Kamenetskii, A.V. Vologodskii “Topological aspects of the physics of polymers: The theory and its biophysical applicationsSov. Phys. Usp. 24 679–696 (1981)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions