Issues

 / 

1995

 / 

May

  

Reviews of topical problems


Critical phenomena and quenched disorder

 a, b
a LPTMC, Université, Paris, France
b Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation

Theoretical ideas for deriving singularities of thermodynamical functions at the second-order phase transitions in spin systems with weak quenched disorder are considered. In particular, p-component vector magnets and the two-dimensional Ising model with disorder in spin-spin interactions are studied. Generalisation of the traditional renormalisation-group scheme, which takes into account non-perturbative spin-glass degrees of freedom, is proposed. Low-temperature properties and the phase transition in the Ising systems with quenched random fields are also considered.

Fulltext pdf (1.1 MB)
Fulltext is also available at DOI: 10.1070/PU1995v038n05ABEH000084
PACS: 05.70.Fh, 05.50.+q, 05.70.jk (all)
DOI: 10.1070/PU1995v038n05ABEH000084
URL: https://ufn.ru/en/articles/1995/5/a/
A1995RH37700001
Citation: Dotsenko V S "Critical phenomena and quenched disorder" Phys. Usp. 38 457–496 (1995)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Доценко В С «Критические явления в спиновых системах с беспорядком» УФН 165 481–528 (1995); DOI: 10.3367/UFNr.0165.199505a.0481

References (65) Cited by (164) Similar articles (20) ↓

  1. R. Folk, Yu. Holovatch, T. Yavorskii “Critical exponents of a three-dimensional weakly diluted quenched Ising modelPhys. Usp. 46 169–191 (2003)
  2. S.V. Maleev “Polarized neutron scattering in magnetsPhys. Usp. 45 569–596 (2002)
  3. I.K. Kamilov, A.K. Murtazaev, Kh.K. Aliev “Monte Carlo studies of phase transitions and critical phenomenaPhys. Usp. 42 689–709 (1999)
  4. V.S. Dotsenko “Physics of the spin-glass statePhys. Usp. 36 (6) 455–485 (1993)
  5. R.S. Gekht “Magnetic states and phase transitions in frustrated triangular-lattice antiferromagnetsSov. Phys. Usp. 32 871–890 (1989)
  6. I.Ya. Korenblit, E.F. Shender “Spin glasses and nonergodicitySov. Phys. Usp. 32 139–162 (1989)
  7. A.I. Olemskoi, I.A. Sklyar “Evolution of the defect structure of a solid during plastic deformationSov. Phys. Usp. 35 (6) 455–480 (1992)
  8. S.V. Demishev “Spin-fluctuation transitionsPhys. Usp. 67 22–43 (2024)
  9. V.V. Prudnikov, P.V. Prudnikov, M.V. Mamonova “Nonequilibrium critical behavior of model statistical systems and methods for the description of its featuresPhys. Usp. 60 762–797 (2017)
  10. V.I. Alkhimov “Excluded volume effect in statistics of self-avoiding walksPhys. Usp. 37 527–561 (1994)
  11. A.I. Olemskoi, I.V. Koplyk “The theory of spatiotemporal evolution of nonequilibrium thermodynamic systemsPhys. Usp. 38 1061–1097 (1995)
  12. A.M. Dykhne, Yu.B. Rumer “Thermodynamics of a plane Ising-Onsager dipole latticeSov. Phys. Usp. 4 698–705 (1962)
  13. A.I. Olemskoi, A.Ya. Flat “Application of fractals in condensed-matter physicsPhys. Usp. 36 (12) 1087–1128 (1993)
  14. V.F. Kovalenko, E.L. Nagaev “Photoinduced magnetismSov. Phys. Usp. 29 297–321 (1986)
  15. T.V. Tropin, Ju.W.P. Schmelzer, V.L. Aksenov “Modern aspects of the kinetic theory of glass transitionPhys. Usp. 59 42–66 (2016)
  16. B.M. Smirnov “Scaling method in atomic and molecular physicsPhys. Usp. 44 1229–1253 (2001)
  17. S.V. Demishev, Yu.V. Kosichkin et alAmorphous semiconductors prepared by quenching under high pressurePhys. Usp. 37 185–217 (1994)
  18. A.I. Olemskoi “Theory of stochastic systems with singular multiplicative noisePhys. Usp. 41 269–301 (1998)
  19. I.M. Suslov “Development of a (4-ε)-dimensional theory for the density of states of a disordered system near the Anderson transitionPhys. Usp. 41 441–467 (1998)
  20. I.Ya. Korenblit, E.F. Shender “Ferromagnetism of disordered systemsSov. Phys. Usp. 21 832–851 (1978)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions