Reviews of topical problems

Critical phenomena and quenched disorder

 a, b
a LPTMC, Université, Paris, France
b Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation

Theoretical ideas for deriving singularities of thermodynamical functions at the second-order phase transitions in spin systems with weak quenched disorder are considered. In particular, p-component vector magnets and the two-dimensional Ising model with disorder in spin-spin interactions are studied. Generalisation of the traditional renormalisation-group scheme, which takes into account non-perturbative spin-glass degrees of freedom, is proposed. Low-temperature properties and the phase transition in the Ising systems with quenched random fields are also considered.

Fulltext pdf (990 KB)
Fulltext is also available at DOI: 10.1070/PU1995v038n05ABEH000084
PACS: 05.70.Fh, 05.50.+q, 05.70.jk (all)
DOI: 10.1070/PU1995v038n05ABEH000084
Citation: Dotsenko V S "Critical phenomena and quenched disorder" Phys. Usp. 38 457–496 (1995)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Доценко В С «Критические явления в спиновых системах с беспорядком» УФН 165 481–528 (1995); DOI: 10.3367/UFNr.0165.199505a.0481

References (65) Cited by (146) Similar articles (20) ↓

  1. R. Folk, Yu. Holovatch, T. Yavorskii “Critical exponents of a three-dimensional weakly diluted quenched Ising model46 169–191 (2003)
  2. S.V. Maleev “Polarized neutron scattering in magnets45 569–596 (2002)
  3. I.K. Kamilov, A.K. Murtazaev, Kh.K. Aliev “Monte Carlo studies of phase transitions and critical phenomena42 689–709 (1999)
  4. V.S. Dotsenko “Physics of the spin-glass state36 (6) 455–485 (1993)
  5. R.S. Gekht “Magnetic states and phase transitions in frustrated triangular-lattice antiferromagnets32 871–890 (1989)
  6. I.Ya. Korenblit, E.F. Shender “Spin glasses and nonergodicity32 139–162 (1989)
  7. V.V. Prudnikov, P.V. Prudnikov, M.V. Mamonova “Nonequilibrium critical behavior of model statistical systems and methods for the description of its features60 762–797 (2017)
  8. V.I. Alkhimov “Excluded volume effect in statistics of self-avoiding walks37 527–561 (1994)
  9. A.I. Olemskoi, I.V. Koplyk “The theory of spatiotemporal evolution of nonequilibrium thermodynamic systems38 1061–1097 (1995)
  10. A.M. Dykhne, Yu.B. Rumer “Thermodynamics of a plane Ising-Onsager dipole lattice4 698–705 (1962)
  11. A.I. Olemskoi, I.A. Sklyar “Evolution of the defect structure of a solid during plastic deformation35 (6) 455–480 (1992)
  12. A.I. Olemskoi, A.Ya. Flat “Application of fractals in condensed-matter physics36 (12) 1087–1128 (1993)
  13. V.F. Kovalenko, E.L. Nagaev “Photoinduced magnetism29 297–321 (1986)
  14. T.V. Tropin, Ju.W.P. Schmelzer, V.L. Aksenov “Modern aspects of the kinetic theory of glass transition59 42–66 (2016)
  15. B.M. Smirnov “Scaling method in atomic and molecular physics44 1229–1253 (2001)
  16. S.V. Demishev, Yu.V. Kosichkin et alAmorphous semiconductors prepared by quenching under high pressure37 185–217 (1994)
  17. I.M. Suslov “Development of a (4-ε)-dimensional theory for the density of states of a disordered system near the Anderson transition41 441–467 (1998)
  18. A.I. Olemskoi “Theory of stochastic systems with singular multiplicative noise41 269–301 (1998)
  19. V.V. Zosimov, L.M. Lyamshev “Fractals in wave processes38 347–384 (1995)
  20. S.M. Stishov “Quantum phase transitions47 789–795 (2004)

The list is formed automatically.

© 1918–2023 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions