Reviews of topical problems

Structure of a strongly coupled large polaron

 a,  b
a Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
b Department of Quantum-Chemical Systems, Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation

We use the translationally invariant Bogolyubov-Tyablikov method to propose a polaron theory. We present calculations of autolocalised electron states for different types of interaction. The structure of these states is shown to be strongly related to the structure and details of the local phonon spectrum. We calculate this spectrum in the strong-coupling limit. Applications of the large polaron model and possibilities of experimental tests are considered for the strong coupling. We generalise the Bogolyubov-Tyablikov treatment to the strongly coupled bipolaron and give criteria of the stability and formation of the bipolaron states.

Fulltext is available at IOP
PACS: 71.38.+i, 71.50.+t
DOI: 10.1070/PU1995v038n03ABEH000075
Citation: Lakhno V D, Chuev G N "Structure of a strongly coupled large polaron" Phys. Usp. 38 273–285 (1995)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Лахно В Д, Чуев Г Н «Структура полярона большого радиуса в пределе сильной связи» УФН 165 285–298 (1995); DOI: 10.3367/UFNr.0165.199503c.0285

References (128) Cited by (15) Similar articles (20) ↓

  1. N.I. Kashirina, V.D. Lakhno “Large-radius bipolaron and the polaron-polaron interaction53 431–453 (2010)
  2. V.D. Lakhno “Pekar's ansatz and the strong coupling problem in polaron theory58 295–308 (2015)
  3. G.N. Chuev “Statistical physics of the solvated electron42 149 (1999)
  4. A.S. Alexandrov, A.B. Krebs “Polarons in high-temperature superconductors35 (5) 345–383 (1992)
  5. A.S. Davydov “Solitons in quasi-one-dimensional molecular structures25 898–918 (1982)
  6. V.V. Egorov, M.V. Alfimov “Theory of the J-band: from the Frenkel exciton to charge transfer50 985–1029 (2007)
  7. I.B. Levinson, É.I. Rashba “Threshold phenomena and bound states in the polaron problem16 892–912 (1974)
  8. I.M. Lifshitz “Energy spectrum structure and quantum states of disordered condensed systems7 549–573 (1965)
  9. L.I. Krishtalik “Proteins as specific polar media for charge transfer processes55 1192–1213 (2012)
  10. A.V. Eletskii, B.M. Smirnov “Fullerenes and carbon structures38 935–964 (1995)
  11. O.V. Misochko “Electronic Raman scattering in high-temperature superconductors46 373–392 (2003)
  12. V.I. Kaidanov, Yu.I. Ravich “Deep and resonance states in AIV BVI semiconductors28 31–53 (1985)
  13. E.G. Maksimov, D.Yu. Savrasov, S.Yu. Savrasov “The electron-phonon interaction and the physical properties of metals40 337–358 (1997)
  14. M.A. Krivoglaz “Fluctuon states of electrons16 856–877 (1974)
  15. V.L. Bonch-Bruevich “Problems of the electron theory of disordered semiconductors26 664–695 (1983)
  16. Yu.A. Izyumov “Strongly correlated electrons: the t-J model40 445–476 (1997)
  17. E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii “Generalized dynamical mean-field theory in the physics of strongly correlated systems55 325–355 (2012)
  18. O.V. Misochko “Nonclassical states of lattice excitations: squeezed and entangled phonons56 868–882 (2013)
  19. N.P. Kovalenko, I.Z. Fisher “Method of integral equations in statistical theory of liquids15 592–607 (1973)
  20. V.D. Lakhno “Spin wave amplification in magnetically ordered crystals39 669–693 (1996)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions