Issues

 / 

1994

 / 

November

  

Reviews of topical problems


Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions


Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics, prosp. Mira 37, Sarov, Nizhny Novgorod region, 607188, Russian Federation

An experimental investigation was made of the compressibility of condensed materials under the conditions of underground nuclear explosions. The majority of the measurements were absolute: they were carried out in the range 5-10 TPa for heavy materials and at 2 TPa for light materials. Iron, lead, copper, cadmium, molybdenum, aluminium, as well as quartz, water, and polymethyl methacrylate were investigated. The compressibility measurements were made not only on continuous samples, but also on porous samples of iron, copper, tungsten, and quartz. The results agree with the Thomas-Fermi calculation model with quantum and exchange corrections when nuclear interactions are taken into account. The slope dD/dU of the adiabats was 1.2 at ultrahigh pressures (above 1 and 0.3 TPa for heavy and light materials, respectively). In the range of pressures attainable in laboratory experiments the results were scaling-independent.

Fulltext pdf (653 KB)
Fulltext is also available at DOI: 10.1070/PU1994v037n11ABEH000055
PACS: 62.20.Fe, 62.10.+s, 47.40.Nm, 28.70.+y (all)
DOI: 10.1070/PU1994v037n11ABEH000055
URL: https://ufn.ru/en/articles/1994/11/d/
A1994QB04700004
Citation: Trunin R F "Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions" Phys. Usp. 37 1123–1145 (1994)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Трунин Р Ф «Ударная сжимаемость конденсированных веществ в мощных ударных волнах подземных ядерных взрывов» УФН 164 1215–1237 (1994); DOI: 10.3367/UFNr.0164.199411d.1215

References (64) Cited by (130) ↓ Similar articles (20)

  1. FANG Jun, ZHAO Yanhong et al Acta Phys. Sin. 74 (15) 156401 (2025)
  2. Khishchenko K V, Boyarskikh K A et al Metals 15 (11) 1189 (2025)
  3. Aglitskiy Y, Zulick C et al Physics of Plasmas 32 (10) (2025)
  4. Blanchet A, Soubiran F et al Phys. Rev. E 111 (1) (2025)
  5. Yang L, Rehwald M et al Matter and Radiation at Extremes 9 (4) (2024)
  6. Khishchenko K V High Temp 62 (2) 150 (2024)
  7. Bagusat F, Sauer M et al Dynamic Behavior of Materials (2024) p. 269
  8. Huff M F, Fratanduono D E et al Phys. Rev. B 109 (18) (2024)
  9. Gus’kov S Yu Uspekhi Fizicheskikh Nauk 194 (09) 941 (2024) [Gus’kov S Yu Phys. Usp. 67 (09) 888 (2024)]
  10. Bennett K C, Stahl A M et al Num Anal Meth Geomechanics 48 (10) 2521 (2024)
  11. Paddock R W, von der Leyen M W et al Phys. Rev. E 107 (2) (2023)
  12. Nikolaev D N, Lomonosov I V High Temp 61 (2) 291 (2023)
  13. Lomonosov I V High Temp 61 (3) 436 (2023)
  14. Singh S, Briggs R et al Phys. Rev. B 108 (18) (2023)
  15. Wu Ch J, Benedict L X et al Phys. Rev. B 108 (1) (2023)
  16. Kinelovskii S A Tech. Phys. 68 (S2) S273 (2023)
  17. Gus’kov S Yu Bull. Lebedev Phys. Inst. 50 (S4) S395 (2023)
  18. Calvo-Rivera A, Huete C, Velikovich A L Physics of Fluids 34 (4) (2022)
  19. Fortov V E, Il’kaev R I et al Her. Russ. Acad. Sci. 91 (3) 239 (2021)
  20. Henderson B J, Marshall M C et al Phys. Rev. B 103 (9) (2021)
  21. Kinelovskii S A J Appl Mech Tech Phy 62 (2) 214 (2021)
  22. Mohan A, Chaurasia S et al Journal Of Quantitative Spectroscopy And Radiative Transfer 263 107547 (2021)
  23. Fortov V Intense Shock Waves on Earth and in Space Shock Wave And High Pressure Phenomena Chapter 6 (2021) p. 167
  24. Wei T, Lim S, Wang Ya Journal of Applied Physics 128 (23) (2020)
  25. Ali S J, Swift D C et al Journal of Applied Physics 128 (18) (2020)
  26. McCoy C A, Marshall M C et al Phys. Rev. B 100 (1) (2019)
  27. Marshall M C, Lazicki A E et al Phys. Rev. B 99 (17) (2019)
  28. Maevskii K K, Kinelovskii S A J Appl Mech Tech Phy 60 (4) 612 (2019)
  29. Maevskii K K, Kinelovskii S A Tech. Phys. 64 (8) 1090 (2019)
  30. Orlov N Yu, Kadatskiy M A et al Matter and Radiation at Extremes 4 (5) (2019)
  31. Kang D, Dai J J. Phys.: Condens. Matter 30 (7) 073002 (2018)
  32. Kadatskiy M A, Khishchenko K V Physics of Plasmas 25 (11) (2018)
  33. Sjostrom T, Crockett S Phys. Rev. E 97 (5) (2018)
  34. Apfelbaum E M Physics of Plasmas 25 (7) (2018)
  35. Driver K P, Soubiran F, Militzer B Phys. Rev. E 97 (6) (2018)
  36. Velikovich A L, Giuliani J L Phys. Rev. E 98 (1) (2018)
  37. Popova T V, Mayer A E, Khishchenko K V Journal of Applied Physics 123 (23) (2018)
  38. Badziak J, Kucharik M, Liska R J. Phys.: Conf. Ser. 959 012012 (2018)
  39. Badziak J, Kucharik M, Liska R Laser Part. Beams 35 (4) 619 (2017)
  40. Zhang Q B, Braithwaite C H, Zhao J Phil. Trans. R. Soc. A. 375 (2085) 20160169 (2017)
  41. Jones D R, Morrow B M et al Journal of Applied Physics 122 (4) (2017)
  42. McCoy Ch A, Knudson M D, Root S Phys. Rev. B 96 (17) (2017)
  43. Batani D EPL 114 (6) 65001 (2016)
  44. Haberl B, Strobel T A, Bradby J E Applied Physics Reviews 3 (4) (2016)
  45. Badziak J, Krousky E et al J. Inst. 11 (03) C03043 (2016)
  46. Fortov V E Springer Series In Materials Science Vol. Extreme States of MatterHigh-Power Lasers in High-Energy-Density Physics216 Chapter 5 (2016) p. 167
  47. Khishchenko K V J. Phys.: Conf. Ser. 774 012001 (2016)
  48. Fortov V E Springer Series In Materials Science Vol. Extreme States of MatterExtreme States in a Nuclear Explosion216 Chapter 4 (2016) p. 91
  49. Fortov V E Springer Series In Materials Science Vol. Extreme States of MatterHigh Energy Densities in Planets and Stars216 Chapter 9 (2016) p. 505
  50. Kadatskiy M A, Khishchenko K V J. Phys.: Conf. Ser. 774 012005 (2016)
  51. Liu H, Song H et al Matter and Radiation at Extremes 1 (2) 123 (2016)
  52. McCoy C A, Gregor M C et al Journal of Applied Physics 120 (23) (2016)
  53. Fortov V E Springer Series In Materials Science Vol. Extreme States of MatterHigh Energy Densities Outside of Compact Astrophysical Objects216 Chapter 10 (2016) p. 591
  54. Fortov V E Springer Series In Materials Science Vol. Extreme States of MatterHigh Energy Densities in Laboratories216 Chapter 3 (2016) p. 23
  55. Millot M, Dubrovinskaia N et al Science 347 (6220) 418 (2015)
  56. Huser G, Recoules V et al Phys. Rev. E 92 (6) (2015)
  57. Badziak J, Rosiński M et al Plasma Phys. Control. Fusion 57 (1) 014007 (2015)
  58. Popova T V, Mayer A E, Khishchenko K V J. Phys.: Conf. Ser. 653 012045 (2015)
  59. Brygoo S, Millot M et al Journal of Applied Physics 118 (19) (2015)
  60. Badziak J, Rosiński M et al Physics of Plasmas 22 (3) (2015)
  61. Rapp L, Haberl B et al Nat Commun 6 (1) (2015)
  62. Khishchenko K V J. Phys.: Conf. Ser. 653 012081 (2015)
  63. Rapp L, Haberl B et al Appl. Phys. A 114 (1) 33 (2014)
  64. Fortov V E, Lomonosov I V Uspekhi Fizicheskikh Nauk 184 (3) 231 (2014) [Fortov V E, Lomonosov I V Phys.-Usp. 57 (3) 219 (2014)]
  65. Cherepanov G P, Zakirov K R Phys Mesomech 17 (3) 163 (2014)
  66. Schulze P A, Ivanov T W et al Journal of Applied Physics 115 (2) (2014)
  67. Rapp L, Haberl B et al Springer Series In Materials Science Vol. Fundamentals of Laser-Assisted Micro- and NanotechnologiesUltrafast Laser Induced Confined Microexplosion: A New Route to Form Super-Dense Material Phases195 Chapter 1 (2014) p. 3
  68. Knudson M D, Desjarlais M P Phys. Rev. B 88 (18) (2013)
  69. Kudasov Yu B, Surdin O M et al J. Exp. Theor. Phys. 117 (4) 664 (2013)
  70. Fortov V E, Mintsev V B Russ. Chem. Rev. 82 (7) 597 (2013)
  71. Schulze P A, Dang N C et al J. Phys. Chem. A 117 (29) 6158 (2013)
  72. Gamaly E G, Rode A V Progress In Quantum Electronics 37 (5) 215 (2013)
  73. Plasma Discharge in Liquid (2012) p. 161
  74. Hamel S, Benedict L X et al Phys. Rev. B 86 (9) (2012)
  75. Dang N C, Bolme C A et al J. Phys. Chem. A 116 (42) 10301 (2012)
  76. Barrios M A, Boehly T R et al Journal of Applied Physics 111 (9) (2012)
  77. Dai J, Kang D et al Phys. Rev. Lett. 109 (17) (2012)
  78. Medvedev A B, Trunin R F Uspekhi Fizicheskikh Nauk 182 (8) 829 (2012)
  79. Trunin R F Uspekhi Fizicheskikh Nauk 181 (4) 416 (2011)
  80. Starikovskiy A, Yang Y et al Plasma Sources Sci. Technol. 20 (2) 024003 (2011)
  81. Starikovskiy A, Yang Y et al 42nd AIAA Plasmadynamics and Lasers Conference, (2011)
  82. Krehl P O K EPJ H 36 (1) 85 (2011)
  83. Fortov V E Extreme States of Matter The Frontiers Collection Chapter 7 (2011) p. 185
  84. Belashchenko D K, Ostrovskii O I Russ. J. Phys. Chem. 85 (6) 967 (2011)
  85. Fortov V E Extreme States of Matter The Frontiers Collection Chapter 4 (2011) p. 75
  86. Barrios M A, Hicks D G et al Physics of Plasmas 17 (5) (2010)
  87. Resnyansky A D Journal of Applied Physics 108 (8) (2010)
  88. Ozaki N, Sano T et al Physics of Plasmas 16 (6) (2009)
  89. Fortov V E Uspekhi Fizicheskikh Nauk 179 (6) 653 (2009) [Fortov V E Phys.-Usp. 52 (6) 615 (2009)]
  90. Pickard Ch J, Needs R J J. Phys.: Condens. Matter 21 (45) 452205 (2009)
  91. Nigmatulin R I, Bolotnova R Kh High Temp 46 (2) 182 (2008)
  92. Hicks D G, Boehly T R et al Phys. Rev. B 78 (17) (2008)
  93. Fortov V E, Khoffmann D, Sharkov B Yu Uspekhi Fizicheskikh Nauk 178 (2) 113 (2008)
  94. Resnyansky A D Journal of Applied Physics 104 (9) (2008)
  95. Nigmatulin R I, Bolotnova R Kh High Temp 46 (3) 325 (2008)
  96. Eggert J, Brygoo S et al Phys. Rev. Lett. 100 (12) (2008)
  97. Brygoo S, Henry E et al Nature Mater 6 (4) 274 (2007)
  98. Pain J C Contrib. Plasma Phys. 47 (6) 421 (2007)
  99. Lahey R T, Taleyarkhan R P et al Advances In Heat Transfer Vol. 39 (2006) p. 1
  100. Avrorin E N, Simonenko V A, Shibarshov L I Uspekhi Fizicheskikh Nauk 176 (4) 449 (2006)
  101. Bar-Shalom A, Oreg J, Klapisch M Journal Of Quantitative Spectroscopy And Radiative Transfer 99 (1-3) 35 (2006)
  102. Simonenko V A Uspekhi Fizicheskikh Nauk 176 (8) 889 (2006)
  103. Popov A G, Borodai V E Russ Phys J 48 (7) 665 (2005)
  104. Hicks D G, Boehly T R et al Physics of Plasmas 12 (8) (2005)
  105. Nigmatulin R I, Akhatov I Sh et al Physics of Fluids 17 (10) (2005)
  106. Khishchenko K V, Fortov V E, Lomonosov I V Int J Thermophys 26 (2) 479 (2005)
  107. Trunin R F, Krupnikov K K et al High-Pressure Shock Compression of Solids VII Chapter 5 (2004) p. 177
  108. Trunin R F High Temperature 42 (1) 154 (2004)
  109. Boehly T R, Hicks D G et al Physics of Plasmas 11 (9) L49 (2004)
  110. Field J E, Walley S M et al International Journal Of Impact Engineering 30 (7) 725 (2004)
  111. Trunin R F High-Pressure Shock Compression of Solids VII Chapter 3 (2004) p. 77
  112. Batani D, Morelli A et al Phys. Rev. Lett. 88 (23) (2002)
  113. Tkachenko S I, Khishchenko K V et al High Temperature 39 (5) 674 (2001)
  114. Trunin R F Uspekhi Fizicheskikh Nauk 171 (4) 387 (2001)
  115. Kokhanenko I K, Levchenko E M Tech. Phys. 46 (1) 20 (2001)
  116. Koenig M Atoms, Solids, and Plasmas in Super-Intense Laser Fields Chapter 18 (2001) p. 327
  117. Surh M, Barbee T, Yang L Phys. Rev. Lett. 86 (26) 5958 (2001)
  118. Wang Y, Li L Phys. Rev. B 62 (1) 196 (2000)
  119. Gudarenko L F, Gushchina O N et al High Temp 38 (3) 413 (2000)
  120. Hora H, Miley G H Czechoslovak Journal Of Physics 50 (3) 433 (2000)
  121. Wang Y, Chen D, Zhang X Phys. Rev. Lett. 84 (15) 3220 (2000)
  122. Mechanical Testing and Evaluation (2000) p. 530
  123. Batani D, Balducci A et al Phys. Rev. B 61 (14) 9287 (2000)
  124. Witte K, Basko M et al Fusion Engineering And Design 44 (1-4) 147 (1999)
  125. Al’tshuler L V, Trunin R F et al Uspekhi Fizicheskikh Nauk 169 (3) 323 (1999)
  126. Rogers F J, Young D A Phys. Rev. E 56 (5) 5876 (1997)
  127. Trunin R F International Journal Of Impact Engineering 20 (6-10) 801 (1997)
  128. Campbell E M, Holmes N C et al Laser Part. Beams 15 (4) 607 (1997)
  129. Al’tshuler L V, Trunin R F et al Uspekhi Fizicheskikh Nauk 166 (5) 575 (1996)
  130. Benuzzi A, Löwer T et al Phys. Rev. E 54 (2) 2162 (1996)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions