Issues

 / 

1993

 / 

July

  

Methodological notes


Phase functions for potential scattering in optics

,  a
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

Equations for the phase functions are presented in a form convenient for analyzing the solutions of both the Schrödinger equation and the problem of electromagnetic wave propagation in inhomogeneous media. It is shown how the problem of electromagnetic wave propagation in media with a real-valued dielectric constant (and, hence, the problem of above- and below-barrier transmission) reduces to one of calculating the phase for the potential scattering. One can then obtain not only such integrated characteristics as the coefficients of transmission and reflection but also exact expressions for the solution of the wave equation, in the form of quadratures containing the current ("instantaneous") value of the phase. The problem simplifies substantially for a layer symmetric with respect to the coordinate. It is shown that the method of phase functions gives an exact description of two opposite limiting cases, viz., the short-wavelength limit and Fresnel reflection, through a single simple analytical formula. A detailed discussion is given for above- and below-barrier reflection near the edge of the barrier.

Fulltext pdf (407 KB)
Fulltext is also available at DOI: 10.1070/PU1993v036n07ABEH002293
PACS: 41.20.Jb
DOI: 10.1070/PU1993v036n07ABEH002293
URL: https://ufn.ru/en/articles/1993/7/f/
Citation: Kraĭnov V L, Presnyakov L P "Phase functions for potential scattering in optics" Phys. Usp. 36 (7) 621–627 (1993)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Крайнов В П, Пресняков Л П «Фазовые функции потенциального рассеяния в оптике» УФН 163 (7) 85–92 (1993); DOI: 10.3367/UFNr.0163.199307f.0085

References (17) ↓ Cited by (3) Similar articles (20)

  1. Landau L D and E M Lifshitz Quantum Mechanics; Non-Relativistic Theory 3rd ed. (Pergamon Press, Oxford, 1977); Russian original:, Landau L D and E M Lifshitz Quantum Mechanics; Non-Relativistic Theory 3rd ed. (Nauka, Moscow, 1989)
  2. Ginzburg V L The Propagation Of Electromagnetic Waves In Plasmas 2nd ed. (Pergamon Press, Oxford, 1970); Russian original:, Ginzburg V L The Propagation Of Electromagnetic Waves In Plasmas 2nd ed. (Nauka, Moscow, 1967)
  3. Olver F W J Asymptotics And Special Functions (Academic Press, New York, 1974); Russian translation:, Olver F W J Asymptotics And Special Functions (Nauka, Moscow, 1990)
  4. Morse P M and H Feshbach Methods Of Theoretical Physics Vol. Vol. 2 (McGraw-Hill, New York, 1953); Russian translation:, Morse P M and H Feshbach Methods Of Theoretical Physics (IL, Moscow, 1960)
  5. Morse P M and W P Allis Phys. Rev. 44 269 (1933)
  6. Drukarev G F Zh. Eksp. Teor. Fiz. 19 247 (1949)
  7. Babikov V V Method Of Phase Functions In Quantum Mechanics, [in Russian] 2nd ed. (Nauka, Moscow, 1976)
  8. Calogero F Variable Phase Approach To Potential Scattering (Academic Press, N.Y., 1967); Russian translation:, Calogero F Variable Phase Approach To Potential Scattering (Mir, Moscow, 1972)
  9. Presnyakov L P Phys. Rev. A 44 5636 (1991)
  10. Presnyakov L P Tr. Fiz. Inst. Akad. Nauk SSSR 215 212 (1992)
  11. Bremmer H Physica (The Hague) 15 593 (1949)
  12. Presnyakov L P and I I Sobel’man Radiofiz. 8 54 (1965)
  13. Makai E Compos. Math. 6 368 (1936); Makai E Annali Pisa 10 123 (1941)
  14. Lifshitz E M and L P Pitaevski&ibreve; Statistical Physics [in Russian] (Nauka, Moscow, 1978) p. 246
  15. Froman N and P O Fröman JWKB Approximation: Contributions To The Theory (North-Holland, Amsterdam, 1965); Russian translation:, Froman N and P O Fröman JWKB Approximation: Contributions To The Theory (Mir, Moscow, 1967)
  16. Delone N B, V P Krainov, and V V Suran Laser Phys. 2 815 (1992)
  17. Froman N and P O Fröman Phys. Rev. A 43 3563 (1991)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions