Loading [MathJax]/jax/output/CommonHTML/jax.js

Issues

 / 

1991

 / 

September

  

Reviews of topical problems


The self-avoiding walk problem

Different approaches to the self-avoiding walk problem are reviewed. The problem first arose in the statistical physics of linear polymers in connection with the evaluation of the average size of a polymer. The probability distribution density WN(R) for the vector R connecting the end-points of an N-step self-avoiding walk is the main quantity in this problem. The equation for WN(R) seems to be invariant under the scaling transformation group. This means that the renormalization group method can be used to determine the asymptotic form of WN(R) as N.

Fulltext pdf (715 KB)
Fulltext is also available at DOI: 10.1070/PU1991v034n09ABEH002473
PACS: 05.40.Fb, 64.60.Ak, 64.60.Fr (all)
DOI: 10.1070/PU1991v034n09ABEH002473
URL: https://ufn.ru/en/articles/1991/9/c/
Citation: Alkhimov V I "The self-avoiding walk problem" Sov. Phys. Usp. 34 (9) 804–816 (1991)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Алхимов В И «Проблема случайных блужданий без самопересечений» УФН 161 (9) 133–160 (1991); DOI: 10.3367/UFNr.0161.199109c.0133

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions