Issues

 / 

1991

 / 

August

  

Reviews of topical problems


Classical nonlinear dynamics and chaos of rays in problems of wave propagation in inhomogeneous media

We discuss the geometrical theory of wave propagation in regularly inhomogeneous waveguide media from the point of view of nonlinear Hamiltonian dynamics. We consider ray dynamics in waveguides with periodic longitudinal inhomogeneities, including the phenomenon of spatial nonlinear resonance of rays, which leads to the formation of an effective waveguide channel in the neighborhood of the ray in resonance with the periodic inhomogeneities. We consider different properties of spatially resonant rays: the optical path length and propagation velocity of a signal along rays trapped in a separate nonlinear resonance; the fractal properties of rays, such as the "devil's staircase" form of the dependence of the spatial oscillation frequency of the ray and the propagation time of a signal along the rays. The trajectory of sound rays in a model of the ocean with transverse flow is considered using the adiabatic invariant method and the transverse drift of a ray with respect to the main propagation direction of sound is described. We consider the conditions for dynamical chaos of rays in a waveguide with longitudinal periodic inhomogeneities. We examine the conditions for internal spatial nonlinear resonance and chaos of rays in waveguides with an irregular cross section and their effect on the propagation velocity of a signal. We study the connection between the structure of the wave front and the dynamics of rays in waveguide channels with regular inhomogeneities. Finally, we discuss the applicability of geometrical optics in waveguides under the conditions of nonlinear resonance and chaos of rays, and the relation between this problem and quantum chaos.

Fulltext pdf (1.1 MB)
Fulltext is also available at DOI: 10.1070/PU1991v034n08ABEH002461
PACS: 05.45.Df, 05.45.Mt, 43.20.Dk (all)
DOI: 10.1070/PU1991v034n08ABEH002461
URL: https://ufn.ru/en/articles/1991/8/a/
Citation: Abdullaev S S, Zaslavskii G M "Classical nonlinear dynamics and chaos of rays in problems of wave propagation in inhomogeneous media" Sov. Phys. Usp. 34 (8) 645–664 (1991)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Абдуллаев С С, Заславский Г М «Классические нелинейная динамика и хаос лучей в задачах распространения волн в неоднородных средах» УФН 161 (8) 1–43 (1991); DOI: 10.3367/UFNr.0161.199108a.0001

References (77) Cited by (57) Similar articles (20) ↓

  1. A.L. Virovlyansky, D.V. Makarov, S.V. Prants “Ray and wave chaos in underwater acoustic waveguidesPhys. Usp. 55 18–46 (2012)
  2. P.V. Elyutin “The quantum chaos problemSov. Phys. Usp. 31 597–622 (1988)
  3. G.P. Berman, A.R. Kolovskii “Quantum chaos in interactions of multilevel quantum systems with a coherent radiation fieldSov. Phys. Usp. 35 (4) 303–326 (1992)
  4. G.M. Zaslavskii, B.V. Chirikov “Stochastic instability of non-linear oscillationsSov. Phys. Usp. 14 549–568 (1972)
  5. K.N. Alekseev, G.P. Berman et alDynamical chaos in magnetic systemsSov. Phys. Usp. 35 (7) 572–590 (1992)
  6. V.I. Tatarskii “The Wigner representation of quantum mechanicsSov. Phys. Usp. 26 311–327 (1983)
  7. D.A. Trunin “Pedagogical introduction to the Sachdev—Ye—Kitaev model and two-dimensional dilaton gravityPhys. Usp. 64 219–252 (2021)
  8. V.V. Zosimov, L.M. Lyamshev “Fractals in wave processesPhys. Usp. 38 347–384 (1995)
  9. K.V. Koshel, S.V. Prants “Chaotic advection in the oceanPhys. Usp. 49 1151–1178 (2006)
  10. G.M. Zaslavskii, R.Z. Sagdeev et alMinimal chaos, stochastic webs, and structures of quasicrystal symmetrySov. Phys. Usp. 31 887–915 (1988)
  11. A.A. Makarov, A.L. Malinovsky, E.A. Ryabov “Intramolecular vibrational redistribution: from high-resolution spectra to real-time dynamicsPhys. Usp. 55 977–1007 (2012)
  12. G.M. Zaslavskii “Statistics of energy spectraSov. Phys. Usp. 22 788–803 (1979)
  13. M.I. Rabinovich, M.M. Sushchik “The regular and chaotic dynamics of structures in fluid flowsSov. Phys. Usp. 33 (1) 1–35 (1990)
  14. V.V. Uchaikin “Fractional phenomenology of cosmic ray anomalous diffusionPhys. Usp. 56 1074–1119 (2013)
  15. L.M. Zelenyi, A.V. Milovanov “Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamicsPhys. Usp. 47 749–788 (2004)
  16. G.M. Zaslavskii “Nonlinear waves and their interactionSov. Phys. Usp. 16 761–776 (1974)
  17. G.G. Kozlov, I.I. Ryzhov et alDevelopment of laser spectroscopy of spin noisePhys. Usp. 67 251–271 (2024)
  18. L.M. Zelenyi, A.I. Neishtadt et alQuasiadiabatic dynamics of charged particles in a space plasmaPhys. Usp. 56 347–394 (2013)
  19. V.I. Klyatskin, D. Gurarie “Coherent phenomena in stochastic dynamical systemsPhys. Usp. 42 165 (1999)
  20. V.G. Boiko, Kh.I. Mogel’ et alFeatures of metastable states in liquid-vapor phase transitionsSov. Phys. Usp. 34 (2) 141–159 (1991)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions