Issues

 / 

1991

 / 

November

  

Reviews of topical problems


Analytical methods of calculating correlation functions in quantum statistical physics


All-Russian Scientific Research Institute of Experimental Physics — Federal Nuclear Centre, prosp. Mira 37, Sarov, Nizhny Novgorod region, 607190, Russian Federation

A brief but clear and complete account is given for two analytical methods of calculating correlation functions in quantum statistical physics from first principles--the widely used method of two-time temperature Green's functions (the GF method) and a new, ``direct algebraic'' (DA) method. The mathematical and technical clarity and simplicity of the DA method and its resulting practical value are demonstrated for the five most widely used models in quantum statistical physics. Since the DA method is an exactly self-consistent method (in the sense that the expansion coefficients in the equations of motion are chosen from the requirement that the Jacobi operator identity be satisfied exactly), it in principle affords the possibility of an internal check, which is not possible in the GF method. Like the GF method, the DA method permits calculation of the spectra of possible elementary excitations and, hence, of the density of single-particle energy states corresponding to them.

Fulltext pdf (939 KB)
Fulltext is also available at DOI: 10.1070/PU1991v034n11ABEH002482
PACS: 05.30.−d, 05.50.+q, 75.10.Jm, 75.10.Lp, 74.20.Fg (all)
DOI: 10.1070/PU1991v034n11ABEH002482
URL: https://ufn.ru/en/articles/1991/11/b/
Citation: Sarry M F "Analytical methods of calculating correlation functions in quantum statistical physics" Sov. Phys. Usp. 34 (11) 958–979 (1991)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Сарры М Ф «Аналитические методы вычисления корреляционных функций в квантовой статистической физике» УФН 161 (11) 47–92 (1991); DOI: 10.3367/UFNr.0161.199111b.0047

References (54) Cited by (16) Similar articles (20) ↓

  1. D.N. Zubarev “Double-time Green functions in statistical physicsSov. Phys. Usp. 3 320–345 (1960)
  2. M.F. Sarry “Theoretical calculation of equations of state: analytical resultsPhys. Usp. 42 991–1015 (1999)
  3. Ya.S. Lyakhova, G.V. Astretsov, A.N. Rubtsov “Mean-field concept and post-DMFT methods in the modern theory of correlated systemsPhys. Usp. 66 775–793 (2023)
  4. Yu.A. Izyumov “Hubbard model of strong correlationsPhys. Usp. 38 385–408 (1995)
  5. E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii “Generalized dynamical mean-field theory in the physics of strongly correlated systemsPhys. Usp. 55 325–355 (2012)
  6. B.M. Smirnov “Metal nanostructures: from clusters to nanocatalysis and sensorsPhys. Usp. 60 1236–1267 (2017)
  7. V.V. Val’kov, D.M. Dzebisashvili et alSpin-polaron concept in the theory of normal and superconducting states of cupratesPhys. Usp. 64 641–670 (2021)
  8. A.S. Alexandrov, A.B. Krebs “Polarons in high-temperature superconductorsSov. Phys. Usp. 35 (5) 345–383 (1992)
  9. A.I. Voropinov, G.M. Gandel’man, V.G. Podval’nyi “Electronic energy spectra and the equation of state of solids at high pressures and temperaturesSov. Phys. Usp. 13 56–72 (1970)
  10. Yu.A. Izyumov “Magnetism and superconductivity in strongly correlated systemsSov. Phys. Usp. 34 (11) 935–957 (1991)
  11. M.M. Markina, P.S. Berdonosov et alFrancisites as new geometrically frustrated quasi-two-dimensional magnetsPhys. Usp. 64 344–356 (2021)
  12. A.I. Akhiezer, V.V. Krasil’nikov et alTheory of a superfluid Fermi liquidPhys. Usp. 36 (2) 35–64 (1993)
  13. V.I. Alkhimov “Excluded volume effect in statistics of self-avoiding walksPhys. Usp. 37 527–561 (1994)
  14. Yu.A. Izyumov “Strongly correlated electrons: the t-J modelPhys. Usp. 40 445–476 (1997)
  15. N.I. Kulikov, V.V. Tugushev “Spin-density waves and itinerant antiferromagnetism in metalsSov. Phys. Usp. 27 954–976 (1984)
  16. I.M. Suslov “Development of a (4-ε)-dimensional theory for the density of states of a disordered system near the Anderson transitionPhys. Usp. 41 441–467 (1998)
  17. A.A. Grib, E.V. Damaskinskii, V.M. Maksimov “The problem of symmetry breaking and in variance of the vacuum in quantum field theorySov. Phys. Usp. 13 798–815 (1971)
  18. A.M. Dykhne, Yu.B. Rumer “Thermodynamics of a plane Ising-Onsager dipole latticeSov. Phys. Usp. 4 698–705 (1962)
  19. V.M. Mostepanenko, N.N. Trunov “The Casimir effect and its applicationsSov. Phys. Usp. 31 965–987 (1988)
  20. Yu.S. Barash, V.L. Ginzburg “Some problems in the theory of van der Waals forcesSov. Phys. Usp. 27 467–491 (1984)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions