Issues

 / 

1991

 / 

November

  

Reviews of topical problems


Analytical methods of calculating correlation functions in quantum statistical physics


All-Russian Scientific Research Institute of Experimental Physics — Federal Nuclear Centre, prosp. Mira 37, Sarov, Nizhny Novgorod region, 607190, Russian Federation

A brief but clear and complete account is given for two analytical methods of calculating correlation functions in quantum statistical physics from first principles--the widely used method of two-time temperature Green's functions (the GF method) and a new, ``direct algebraic'' (DA) method. The mathematical and technical clarity and simplicity of the DA method and its resulting practical value are demonstrated for the five most widely used models in quantum statistical physics. Since the DA method is an exactly self-consistent method (in the sense that the expansion coefficients in the equations of motion are chosen from the requirement that the Jacobi operator identity be satisfied exactly), it in principle affords the possibility of an internal check, which is not possible in the GF method. Like the GF method, the DA method permits calculation of the spectra of possible elementary excitations and, hence, of the density of single-particle energy states corresponding to them.

Fulltext pdf (939 KB)
Fulltext is also available at DOI: 10.1070/PU1991v034n11ABEH002482
PACS: 05.30.−d, 05.50.+q, 75.10.Jm, 75.10.Lp, 74.20.Fg (all)
DOI: 10.1070/PU1991v034n11ABEH002482
URL: https://ufn.ru/en/articles/1991/11/b/
Citation: Sarry M F "Analytical methods of calculating correlation functions in quantum statistical physics" Sov. Phys. Usp. 34 (11) 958–979 (1991)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Сарры М Ф «Аналитические методы вычисления корреляционных функций в квантовой статистической физике» УФН 161 (11) 47–92 (1991); DOI: 10.3367/UFNr.0161.199111b.0047

References (54) Cited by (16) ↓ Similar articles (20)

  1. Vaskivskyi V I Ukr. J. Phys. 64 477 (2019)
  2. Voronkova T O, Sarry A M et al Theor Math Phys 200 1063 (2019)
  3. Voronkova T O, Sarry A M et al Phys. Solid State 59 977 (2017)
  4. Dorofeyev I Physica A: Statistical Mechanics And Its Applications 445 200 (2016)
  5. Vaskivskyi V I Ukr. J. Phys. 60 1155 (2015)
  6. Pozhar L A Virtual Synthesis of Nanosystems by Design (2015) p. 3
  7. Sarry A M, Sarry M F Tech. Phys. 59 474 (2014)
  8. Khamzin A A, Sitdikov A S et al Phys. Atom. Nuclei 76 457 (2013)
  9. Dorofeyev I A, Vinogradov E A Laser Phys. 21 1 (2011)
  10. Dorofeyev I A, Vinogradov E A Physics Reports 504 75 (2011)
  11. Kasatkin A N, Olesnitskii T A, Sarry M F Phys. Solid State 53 443 (2011)
  12. Khamzin A A, Khamzin A A i dr Teor. Mat. Fiz. 165 160 (2010) [Khamzin A A, Nigmatullin R R Theor Math Phys 165 1371 (2010)]
  13. Argyrakis P, Groda Ya G et al Phys. Rev. E 64 (6) (2001)
  14. Sarry M F Uspekhi Fizicheskikh Nauk 169 1085 (1999)
  15. Nebogatikov N M J Struct Chem 39 938 (1998)
  16. Sarry M F Russ Phys J 38 628 (1995)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions