Issues

 / 

1989

 / 

February

  

Reviews of topical problems


Explosive crystallization of amorphous substances

This review provides an analysis of the theoretical and experimental aspects of explosive crystallization of amorphous substances (glasses). Quantitative criteria are formulated for thermal bistability of quasisteady crystallization of glasses and for the absence of explosive crystallization. Expressions are derived for the critical parameters and the velocity of an explosive crystallization front allowing for the heat transfer conditions and for the geometry of the crystallization front (which may be plane, spherical, or circular). A systematic account is given of thermophysical characteristics and of the parameters governing the thermal stability of practically all the materials in which explosive crystallization has been discovered so far. Data on the velocity of propagation and temperature in an explosive crystallization front are also given. A classification of glasses is proposed on the basis of their stability against explosive crystallization and a quantitative analysis is made of the published experimental data on explosive crystallization of metallic, semiconducting, and insulating glasses. It is shown that there is a satisfactory qualitative and quantitative agreement between the theory and experiment.

Fulltext pdf (829 KB)
Fulltext is also available at DOI: 10.1070/PU1989v032n02ABEH002681
PACS: 64.70.Kb, 61.43.Fs (all)
DOI: 10.1070/PU1989v032n02ABEH002681
URL: https://ufn.ru/en/articles/1989/2/c/
Citation: Shklovskii V A, Kuz’menko V M "Explosive crystallization of amorphous substances" Sov. Phys. Usp. 32 163–180 (1989)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Шкловский В А, Кузьменко В М «Взрывная кристаллизация аморфных веществ» УФН 157 311–338 (1989); DOI: 10.3367/UFNr.0157.198902c.0311

Cited by (54) ↓ Similar articles (20)

  1. Galenko P Phase Field Theory in Materials Physics Chapter 4 (2024) p. 41
  2. Galenko P Phase Field Theory in Materials Physics Chapter 7 (2024) p. 87
  3. Askhabov A M Crystallogr. Rep. 68 1254 (2023)
  4. Wang M, Chen L Crystal Growth & Design 23 5839 (2023)
  5. Tsaregradskaya T L, Plyushchay I V et al Springer Proceedings In Physics Vol. Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their ApplicationsFeatures of Phase Formation Processes in Amorphous Alloys of Fe–Zr System246 Chapter 30 (2021) p. 409
  6. Aleksandrov V D, Frolova S A Russ. Metall. 2021 913 (2021)
  7. Zubarev Ye  M, Samofalov V  M et al Metallofiz. Noveishie Tekhnol. 42 33 (2020)
  8. Malkov V B, Shveikin G P et al Dokl Phys Chem 488 158 (2019)
  9. Galenko P K, Jou D Physics Reports 818 1 (2019)
  10. Malkov V B, Nikolaenko I V et al Dokl Phys Chem 478 39 (2018)
  11. Lombardo S F, Boninelli S et al 123 (10) (2018)
  12. Rogachev A S, Vadchenko S G et al Journal Of Alloys And Compounds 749 44 (2018)
  13. Zubarev E  N, Devizenko O  Yu et al Metallofiz. Noveishie Tekhnol. 40 359 (2018)
  14. Schneider W Heat Mass Transfer 53 2829 (2017)
  15. Borisenko I Yu, Tulin V A Tech. Phys. 62 1679 (2017)
  16. Rogachev A S, Vadchenko S G, Shchukin A S Int. J Self-Propag. High-Temp. Synth. 26 44 (2017)
  17. Rogachev A S, Vadchenko S G et al Jetp Lett. 104 726 (2016)
  18. Kogai V Ya Tech. Phys. 61 461 (2016)
  19. Bezuglyj A I, Shklovskij V A 42 636 (2016)
  20. Buchner Ch, Schneider W 117 (24) (2015)
  21. Han Ch, Li Zh et al Nano Energy 15 193 (2015)
  22. Kogai V Ya Tech. Phys. Lett. 40 636 (2014)
  23. Faizullin M Z, Vinogradov A V, Koverda V P High Temp 52 830 (2014)
  24. Kogai V Ya, Vakhrouchev A V Tech. Phys. Lett. 39 1044 (2013)
  25. Kogai V Ya, Vakhrushev A V, Fedotov A Yu Jetp Lett. 95 454 (2012)
  26. Barelko V V, Kiryukhin D P et al Russ Chem Bull 60 1286 (2011)
  27. Barelko V, Kiryukhin D et al NS 02 1356 (2010)
  28. Smagin I, Nepomnyashchy A Physica D: Nonlinear Phenomena 238 706 (2009)
  29. Grigoropoulos C, Rogers M et al Phys. Rev. B 73 (18) (2006)
  30. Zharkov S M, Kveglis L I Phys. Solid State 46 969 (2004)
  31. Kuz’menko V M, Vladychkin A N 29 928 (2003)
  32. Zharkov S M, Kveglis L I Dokl. Phys. 47 281 (2002)
  33. Kveglis L I, Jarkov S M, Staroverova I V Phys. Solid State 43 1543 (2001)
  34. Kuz’menko V M, Lazarev B G 27 835 (2001)
  35. Gulyaev Yu V, Shevyakhov N S Acoust. Phys. 47 552 (2001)
  36. Olemskoi A I, Khomenko A V, Koverda V P Physica A: Statistical Mechanics And Its Applications 284 79 (2000)
  37. Myagkov V G Jetp Lett. 72 4 (2000)
  38. Kuz’menko V M, Vladychkin A N Phys. Solid State 41 155 (1999)
  39. Mirzoev F, Shelepin L A J Russ Laser Res 20 404 (1999)
  40. Efremov M Yu, Batsulin A F, Sergeev G B Mendeleev Communications 9 7 (1999)
  41. Tyumentsev V A, Belenkov E A et al Carbon 36 845 (1998)
  42. Mirzoev F Kh Tech. Phys. 43 943 (1998)
  43. Myagkov V G, Zhigalov V S et al Tech. Phys. 43 1189 (1998)
  44. Myagkov V G, Bykova L E Jetp Lett. 67 334 (1998)
  45. Shklovskij V A, Ostroushko V N Phys. Rev. B 53 3095 (1996)
  46. Krainyukova N V, Strzhemechny M A, Drobyshev A S Czech J Phys 46 2243 (1996)
  47. Demishev S V, Ischenko T V, Blundell S J J. Phys.: Condens. Matter 7 9173 (1995)
  48. Miagkov V G, Kveglis L I et al J Mater Sci Lett 13 1284 (1994)
  49. Emel’yanov V I, Panin I M Appl. Phys. A 57 561 (1993)
  50. Demishev S V, Ischenko T V et al Journal Of Non-Crystalline Solids 163 13 (1993)
  51. Kuz’menko V M, Vladychkin A N, Navozenko Yu V Journal Of Non-Crystalline Solids 163 195 (1993)
  52. Sobolev S L Uspekhi Fizicheskikh Nauk 161 5 (1991)
  53. Kuz’menko V M, shklovskij V A, Vladychkin A N Journal Of Non-Crystalline Solids 130 319 (1991)
  54. Zülicke Ch, Mikhailov A S, Schimansky-geier L Physica A: Statistical Mechanics And Its Applications 163 559 (1990)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions