Issues

 / 

1987

 / 

February

  

Methodological notes


Fluctuation-dissipation relations. Role of the finiteness of the correlation time. Quantum generalization of Nyquist’s formula


Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

The fluctuation-dissipation relations (FDR) in physical systems are studied at all levels of the statistical description. The most general FDR are the relations for the fluctuations of many-body distribution functions. It is pointed out the problem of formulation of FDR is related to the problem of deriving irreversible equations based on the reversible equations of classical and quantum mechanics. The FDR are divided into two classes: 1) FDR for fluctuations with infinite correlation times (``collisionless approximation''), which correspond to infinitely narrow resonances, and 2) FDR for fluctuations with finite correlation times (``collisional approximation''). The corresponding spectral densities have finite widths, determined by the ``collision integrals''. The fundamental questions about which different viewpoints have been published in the literature are critically analyzed: 1) the limits of applicability of the Callen--Welton formula and 2) the quantum generalization of Nyquist's formula for the intensity of a Langevin source of oscillatory systems. It is shown that the traditional form of the quantum Nyquist formula, is not well-founded and leads to unphysical consequences. A different expression, used in the literature, for the quantum Nyquist formula is examined. It is not universal, but holds in many important cases. Its region of applicability is determined by the corresponding quantum kinetic equations. The consequences of the two forms of the quantum Nyquist formula, which can be checked experimentally, are studied. The question of the formulation of the quantum Nyquist formula is studied as a part of the general problem of determining the intensity of a Langevin source and the corresponding diffusion coefficient in quantum systems. It arises, in particular, also in quantum electrodynamics in the calculation of the Lamb shift (Sec. 12). In this connection two derivations of Bethe's formula for the Lamb shift are analyzed. It is established that the ``subtraction formalism'' of quantum electrodynamics corresponds to the nontraditional form of the quantum Nyquist formula. The exposition is illustrated with many specific examples.

Fulltext pdf (666 KB)
Fulltext is also available at DOI: 10.1070/PU1987v030n02ABEH002812
PACS: 05.40.Ca, 05.70.−a, 05.10.Gg (all)
DOI: 10.1070/PU1987v030n02ABEH002812
URL: https://ufn.ru/en/articles/1987/2/e/
Citation: Klimontovich Yu L "Fluctuation-dissipation relations. Role of the finiteness of the correlation time. Quantum generalization of Nyquist's formula" Sov. Phys. Usp. 30 154–167 (1987)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks
Cited by (12) Similar articles (20) ↓

  1. V.L. Ginzburg, L.P. Pitaevskii “Quantum Nyquist formula and the applicability ranges of the Callen-Welton formulaSov. Phys. Usp. 30 168–171 (1987)
  2. V.I. Tatarskii “Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theoremSov. Phys. Usp. 30 134–152 (1987)
  3. G.N. Bochkov, Yu.E. Kuzovlev “Fluctuation-dissipation relations: achievements and misunderstandingsPhys. Usp. 56 590–602 (2013)
  4. I.P. Bazarov “Paradoxes of gas mixingSov. Phys. Usp. 19 271–273 (1976)
  5. V.V. Popkov, E.V. Shipitsyn “Golden section in the Carnot cyclePhys. Usp. 43 1155–1157 (2000)
  6. Yu.L. Klimontovich “What are stochastic filtering and stochastic resonance?Phys. Usp. 42 37–44 (1999)
  7. V.K. Konyukhov, A.M. Prokhorov “Second law of thermodynamics and thermally excited quantum oscillatorsSov. Phys. Usp. 19 618–623 (1976)
  8. Yu.L. Klimontovich “Relative ordering criteria in open systemsPhys. Usp. 39 1169–1179 (1996)
  9. Yu.L. Klimontovich “Entropy and information of open systemsPhys. Usp. 42 375–384 (1999)
  10. V.B. Braginskii “Adolescent years of experimental physicsPhys. Usp. 46 81–87 (2003)
  11. A.A. Rukhadze, N.N. Sobolev, V.V. Sokovikov “Similarity relations for low-temperature nonisothermal dischargesSov. Phys. Usp. 34 (9) 827–829 (1991)
  12. D.A. Kirzhnits “Are the Kramers-Kronig relations for the dielectric permittivity of a material always valid?Sov. Phys. Usp. 19 530–537 (1976)
  13. V.V. Mityugov “Thermodynamics of simple quantum systemsPhys. Usp. 43 631–637 (2000)
  14. L.V. Prokhorov “Quantization of the electromagnetic fieldSov. Phys. Usp. 31 151–162 (1988)
  15. V.S. Beskin, V.I. Par’ev “Axially symmetric steady-state flows in the vicinity of a Kerr black hole and the nature of the activity of galactic nucleiPhys. Usp. 36 (6) 529–539 (1993)
  16. A.Yu. Andreev, D.A. Kirzhnits “Tachyons and the instability of physical systemsPhys. Usp. 39 1071–1076 (1996)
  17. M.A. Miller, Yu.M. Sorokin, N.S. Stepanov “Covariance of Maxwell equations and comparison of electrodynamic systemsSov. Phys. Usp. 20 264–272 (1977)
  18. B.N. Shvilkin “On measuring the Debye radius in an unstable gas discharge plasmaPhys. Usp. 41 509–510 (1998)
  19. M.V. Kuzelev, A.A. Rukhadze “On the quantum description of the linear kinetics of a collisionless plasmaPhys. Usp. 42 603–605 (1999)
  20. I.I. Sobel’man “On the theory of light scattering in gasesPhys. Usp. 45 75–80 (2002)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions