Issues

 / 

1987

 / 

February

  

Methodological notes


Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theorem

The dynamics of a macroscopic oscillator which is interacting with a heat reservoir, which also consists of oscillators, is analyzed. This problem, which can be solved exactly in its general form in both the classical and quantum-mechanic cases, is used as an example for a study of the transition from a purely dynamic description to a statistical description. Since the system of linear oscillators is not ergodic, an averaging procedure must be regarded as taking an average over the time or over repeated measurements on a unique dynamic trajectory. Depending on the nature of the quadratic form of the potential energy, the oscillations of a macroscopic oscillator can decay in various ways, including exponentially, in the initial stage of the evolution. After a Poincare cycle, the system returns to its initial state, and the damping of the oscillations gives way to a growth. The reversibility of the motion means that the Green's function of the system of oscillators is of odd parity in the time. Equilibrium fluctuations of a macroscopic oscillator are examined. In the classical case the Callen-Welton fluctuation-dissipation theorem can be formulated as follows: The derivative of the coordinate correlation function is proportional to the Green's function of the macroscopic oscillator. In a description in terms of frequencies, the odd parity of the Green's function gives rise to an imaginary part of the Fourier transform of this function in the fluctuation-dissipation theorem. This result is a consequence of the reversibility of the motion in time. The fluctuation-dissipation theorem is proved for Hamiltonian systems without dissipation, but it also applies to systems with dissipation. The exact microscopic Green's function is replaced in this case by the Green's function of a simplified phenomenological description, which explicitly contains dissipative parameters. In the quantum-mechanical case, the results are analogous. The classical and quantum-mechanical versions of the Nyquist relation which follow from the fluctuation-dissipation theorem when the Green's function is approximated by an exponentially damped sinusoidal oscillation are discussed.

Fulltext pdf (879 KB)
Fulltext is also available at DOI: 10.1070/PU1987v030n02ABEH002811
PACS: 03.65.Ca, 03.65.Db, 05.40.−a, 02.30.Uu, 02.30.Nw (all)
DOI: 10.1070/PU1987v030n02ABEH002811
URL: https://ufn.ru/en/articles/1987/2/c/
Citation: Tatarskii V I "Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theorem" Sov. Phys. Usp. 30 134–152 (1987)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Татарский В И «Пример описания диссипативных процессов на основе обратимых динамических уравнений и некоторые замечания относительно флуктуационно-диссипационной теоремы» УФН 151 273–307 (1987); DOI: 10.3367/UFNr.0151.198702c.0273

References (34) Cited by (35) Similar articles (20) ↓

  1. V.L. Ginzburg, L.P. Pitaevskii “Quantum Nyquist formula and the applicability ranges of the Callen-Welton formulaSov. Phys. Usp. 30 168–171 (1987)
  2. Yu.L. Klimontovich “Fluctuation-dissipation relations. Role of the finiteness of the correlation time. Quantum generalization of Nyquist’s formulaSov. Phys. Usp. 30 154–167 (1987)
  3. V.P. Bykov, V.I. Tatarskii “Perturbation theory for resolvents as applied to problems in radiation theorySov. Phys. Usp. 34 (2) 167–184 (1991)
  4. G.N. Bochkov, Yu.E. Kuzovlev “Fluctuation-dissipation relations: achievements and misunderstandingsPhys. Usp. 56 590–602 (2013)
  5. V.Yu. Shishkov, E.S. Andrianov et alRelaxation of interacting open quantum systemsPhys. Usp. 62 510–523 (2019)
  6. V.D. Krivchenkov “Generalized coordinates in quantum mechanicsSov. Phys. Usp. 24 860–863 (1981)
  7. V.M. Rozenbaum, I.V. Shapochkina, L.I. Trakhtenberg “Green's function method in the theory of Brownian motorsPhys. Usp. 62 496–509 (2019)
  8. V.S. Popov “Feynman disentangling оf noncommuting operators and group representation theoryPhys. Usp. 50 1217–1238 (2007)
  9. V.S. Olkhovsky “On time as a quantum observable canonically conjugate to energyPhys. Usp. 54 829–835 (2011)
  10. V.I. Klyatskin “Statistical topography and Lyapunov exponents in stochastic dynamical systemsPhys. Usp. 51 395–407 (2008)
  11. V.I. Ritus “Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in a vacuumPhys. Usp. 65 468–486 (2022)
  12. G.S. Golitsyn “A N Kolmogorov's 1934 paper is the basis for explaining the statistics of natural phenomena of the macrocosmPhys. Usp. 67 80–90 (2024)
  13. A.G. Shalashov “Can we refer to Hamilton equations for an oscillator with friction?Phys. Usp. 61 1082–1088 (2018)
  14. E.V. Shuryak “Stochastic trajectory generation by computerSov. Phys. Usp. 27 448–453 (1984)
  15. O.G. Bakunin “Correlation and percolation properties of turbulent diffusionPhys. Usp. 46 733–744 (2003)
  16. N.N. Rosanov “Antilaser: resonance absorption mode or coherent perfect absorption?Phys. Usp. 60 818–821 (2017)
  17. S.P. Efimov “Coordinate space modification of Fock's theory. Harmonic tensors in the quantum Coulomb problemPhys. Usp. 65 952–967 (2022)
  18. S.V. Vladimirov, Yu.O. Tyshetskiy “On description of a collisionless quantum plasmaPhys. Usp. 54 1243–1256 (2011)
  19. A.S. Tarnovskii “A new representation of quantum mechanicsSov. Phys. Usp. 33 (10) 862–864 (1990)
  20. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions