Issues

 / 

1986

 / 

September

  

Reviews of topical problems


Hydrodynamic instability


P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, ul. Krasikova 23, Moscow, 117218, Russian Federation

Abstract The current state of the classical theory of hydrodynamic instability is examined by viewing the mathematical theory (as well as experimental data) concerning the randomization of motions of liquids and gases as a problem in bifurcation theory of families of dynamic systems. Along with a discussion of the theory of linear operators encountered in hydrodynamics (a theory which is still not entirely complete), the author also gives illustrations of powerful nonlinear methods used in the analysis of hydrodynamic instability, such as Landau's amplitude equations and V. I. Arnold's variational method. The multiplicity of possible scenarios for randomization of fluid motions is noted, of which the most thoroughly investigated is M. Feigenbaum's universal sequence of period-doubling bifurcations. Recent experimental data concerning the bifurcations of G. Taylor flow between rotating cylinders and E. Lorentz flow in the case of convection in a planar fluid layer are analyzed.

Fulltext pdf (1.2 MB)
Fulltext is also available at DOI: 10.1070/PU1986v029n09ABEH003500
PACS: 47.20.−k, 47.85.Dh (all)
DOI: 10.1070/PU1986v029n09ABEH003500
URL: https://ufn.ru/en/articles/1986/9/b/
Citation: Monin A S "Hydrodynamic instability" Sov. Phys. Usp. 29 843–868 (1986)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Монин А С «Гидродинамическая неустойчивость» УФН 150 61–105 (1986); DOI: 10.3367/UFNr.0150.198609b.0061

Cited by (26) ↓ Similar articles (20)

  1. Tsinober A The Essence of Turbulence as a Physical Phenomenon Chapter 4 (2019) p. 41
  2. Baryshnikov A S, Popov P A J. Phys.: Conf. Ser. 1400 077029 (2019)
  3. Nosov V V, Lukin V P et al Atmos Ocean Opt 32 464 (2019)
  4. Bekezhanova V B International Journal Of Heat And Mass Transfer 118 570 (2018)
  5. Baryshnikov A S J. Phys.: Conf. Ser. 1112 012015 (2018)
  6. Kurbatov E P, Bisikalo D V Astron. Rep. 61 475 (2017)
  7. Kurbatov E P, Bisikalo D V Astronomicheskii Zhurnal (6) 477 (2017)
  8. Belotserkovskaya M S, Belotserkovskii O M et al Comput. Math. And Math. Phys. 56 1075 (2016)
  9. Bakunin O G Uspekhi Fizicheskikh Nauk 185 271 (2015) [Bakunin O G Phys.-Usp. 58 252 (2015)]
  10. Chefranov S G, Chefranov A G J. Exp. Theor. Phys. 119 331 (2014)
  11. Tsinober A The Essence of Turbulence as a Physical Phenomenon Chapter 4 (2014) p. 31
  12. Troshkin O V Comput. Math. And Math. Phys. 53 1729 (2013)
  13. Zaspa Yu P J. Frict. Wear 33 396 (2012)
  14. Fluid Mechanics And Its Applications Vol. An Informal Introduction to TurbulenceBibliography63 Chapter 16 (2004) p. 277
  15. Radwan A E International Journal Of Engineering Science 34 963 (1996)
  16. Potapov A A J Eng Phys Thermophys 64 40 (1993)
  17. Adams E Mathematics In Science And Engineering Vol. Scientific Computing with Automatic Result VerificationThe Reliability Question for Discretizations of Evolution Problems189 (1993) p. 423
  18. Radwan A E J. Plasma Phys. 48 487 (1992)
  19. Tagg R NATO ASI Series Vol. Ordered and Turbulent Patterns in Taylor-Couette FlowA Guide to Literature Related to the Taylor-Couette Problem297 Chapter 32 (1992) p. 303
  20. Radwan A E Journal Of Magnetism And Magnetic Materials 92 233 (1990)
  21. Beloshapkin V V, Chernikov A A et al Nature 337 133 (1989)
  22. Radwan A E Journal Of Magnetism And Magnetic Materials 81 299 (1989)
  23. Larchenko V V USSR Computational Mathematics And Mathematical Physics 29 201 (1989)
  24. Akhromeyeva T S, Kurdyumov S P et al Physics Reports 176 189 (1989)
  25. Sutyrin G G Fluid Dyn 23 215 (1988)
  26. Klimontovich Yu L Springer Proceedings In Physics Vol. Lasers and SynergeticsBoltzmann-Gibbs Entropy as a Measure of Order in Self-Organizing (Synergetic) Systems19 Chapter 9 (1987) p. 126

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions