Issues

 / 

1986

 / 

May

  

Reviews of topical problems


Stochastic quantization of field theory

A new quantization procedure based on the analogy between quantum theory and nonequilibrium statistical mechanics is described. Stochastic quantization is particularly useful for gauge theories, including lattice theories. Both the theoretical basis of the method and its computer implementation are discussed. A detailed discussion is given of applications to reduced Eguchi--Kawai models, which correspond to lattice quantum chromodynamics in the limit of an infinite number of colors. The complex stochastic equation corresponding to quantum theory in the ordinary Minkowski space is also examined. The equations are discussed in curved field space, as are the difference equations that replace the stochastic equation with a high degree of precision.

Fulltext pdf (910 KB)
Fulltext is also available at DOI: 10.1070/PU1986v029n05ABEH003373
PACS: 11.15.Ha, 12.38.Gc, 03.70.+k, 12.20.Ds, 05.30.−d (all)
DOI: 10.1070/PU1986v029n05ABEH003373
URL: https://ufn.ru/en/articles/1986/5/a/
Citation: Migdal A A "Stochastic quantization of field theory" Sov. Phys. Usp. 29 389–411 (1986)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Мигдал А А «Стохастическое квантование теории поля» УФН 149 3–44 (1986); DOI: 10.3367/UFNr.0149.198605a.0003

References (33) Cited by (23) Similar articles (20) ↓

  1. Yu.M. Makeenko “The Monte Carlo method in lattice gauge theoriesSov. Phys. Usp. 27 401–430 (1984)
  2. M.I. Polikarpov “Fractals, topological defects, and confinement in lattice gauge theoriesPhys. Usp. 38 591–607 (1995)
  3. K.N. Mukhin, O.O. Patarakin “Δ isobar in nuclei (review of experimental data)Phys. Usp. 38 803–844 (1995)
  4. V.G. Bornyakov, M.I. Polikarpov et alColor confinement and hadron structure in lattice chromodynamicsPhys. Usp. 47 17–35 (2004)
  5. M.A. Shifman “Anomalies and low-energy theorems of quantum chromodynamicsSov. Phys. Usp. 32 289–309 (1989)
  6. G.M. Zaslavskii “Statistics of energy spectraSov. Phys. Usp. 22 788–803 (1979)
  7. V.I. Tatarskii “The Wigner representation of quantum mechanicsSov. Phys. Usp. 26 311–327 (1983)
  8. D.S. Kuz’menko, Yu.A. Simonov, V.I. Shevchenko “Vacuum, confinement, and QCD strings in the vacuum correlator methodPhys. Usp. 47 1–15 (2004)
  9. V.S. Popov “Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory)Phys. Usp. 47 855–885 (2004)
  10. I.V. Krive, A.S. Rozhavskii “Fractional charge in quantum field theory and solid-state physicsSov. Phys. Usp. 30 370–392 (1987)
  11. D.A. Trunin “Pedagogical introduction to the Sachdev—Ye—Kitaev model and two-dimensional dilaton gravityPhys. Usp. 64 219–252 (2021)
  12. V.P. Skripov, A.V. Skripov “Spinodal decomposition (phase transitions via unstable states)Sov. Phys. Usp. 22 389–410 (1979)
  13. V.M. Mostepanenko, N.N. Trunov “The Casimir effect and its applicationsSov. Phys. Usp. 31 965–987 (1988)
  14. A.I. Vainshtein, V.I. Zakharov et alABC of instantonsSov. Phys. Usp. 25 195–215 (1982)
  15. E.L. Feinberg “Hadron clusters and half-dressed particles in quantum field theorySov. Phys. Usp. 23 629–650 (1980)
  16. A.I. Vainshtein, M.B. Voloshin et alCharmonium and quantum chromodynamicsSov. Phys. Usp. 20 796–818 (1977)
  17. A.V. Borisov, A.S. Vshivtsev et alPhotons and leptons in external fields at finite temperature and densityPhys. Usp. 40 229–255 (1997)
  18. M.F. Sarry “Theoretical calculation of equations of state: analytical resultsPhys. Usp. 42 991–1015 (1999)
  19. V.I. Alkhimov “Excluded volume effect in statistics of self-avoiding walksPhys. Usp. 37 527–561 (1994)
  20. D.N. Zubarev “Double-time Green functions in statistical physicsSov. Phys. Usp. 3 320–345 (1960)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions