Issues

 / 

1985

 / 

May

  

Reviews of topical problems


Narrow-gap semimagnetic semiconductors

The good solubility of Mn atoms in a matrix based on gapless semiconductors HgTe, HgSe makes it possible to reconstruct smoothly the band structure of solid solutions Hg$_{1–x}$Mn$_x$Te and Hg$_{1–x}$Mn$_x$Se from the inverted gapless structure to the usual semiconductor structure with a finite energy gap between the valence band and the conduction band. The presence in solid solutions of substitution atoms (Mn) with an uncompensated magnetic moment leads to a significant change in the band spectrum in a magnetic field, which depends on the state of the magnetic subsystem of the impurity ions. All this gives rise to a very specific behavior of the kinetic coefficients in charge-transport phenomena in the region of strong magnetic fields and of magnetooptical phenomena at low temperatures. Such "anomalous" properties as the splitting of the peaks of the Shubnikov-de Haas oscillations as the temperature is increased, the nonmonotonic temperature dependence of the amplitudes of these peaks, the sensitivity to temperature of the spectra of magneto-absorption and other phenomena can be successfully explained only by taking into account the magnetization of the band charge carriers by the molecular field of the localized electrons of the Mn ions. The magnetic properties of semimagnetic semiconductors have also turned out to be quite unique. Thus, in these crystals a concentration transition is observed from a paramagnetic phase into a spin-glass phase. The review presents the most important and significant results of the investigations of gapless and narrow-gap semimagnetic semiconductors obtained recently.

Fulltext pdf (1 MB)
Fulltext is also available at DOI: 10.1070/PU1985v028n05ABEH003799
PACS: 71.20.Nr, 75.50.Pp, 75.30.Kz, 75.60.Ej, 78.20.Ls, 72.20.My (all)
DOI: 10.1070/PU1985v028n05ABEH003799
URL: https://ufn.ru/en/articles/1985/5/c/
Citation: Lyapilin I I, Tsidil’kovskii I M "Narrow-gap semimagnetic semiconductors" Sov. Phys. Usp. 28 349–371 (1985)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Îðèãèíàë: Ëÿïèëèí È È, Öèäèëüêîâñêèé È Ì «Óçêîùåëåâûå ïîëóìàãíèòíûå ïîëóïðîâîäíèêè» ÓÔÍ 146 35–72 (1985); DOI: 10.3367/UFNr.0146.198505c.0035

Cited by (40) ↓ Similar articles (20)

  1. Erenburg S B, Trubina S V et al J. Exp. Theor. Phys. 128 303 (2019)
  2. Veinger A I, Tisnek T V et al Semiconductors 51 163 (2017)
  3. Gheorghitza E I, Ivanov-Omskii V I, Postolaki I T Nanostructures and Thin Films for Multifunctional Applications NanoScience And Technology Chapter 8 (2016) p. 267
  4. Kurilovich P D, Kurilovich V D, Burmistrov I S Phys. Rev. B 94 (15) (2016)
  5. Greshnov A A, Vasil’ev Yu B et al Jetp Lett. 97 102 (2013)
  6. Seyid-Rzayeva S M Physica E: Low-dimensional Systems And Nanostructures 44 1945 (2012)
  7. Aplesnin S S, Romanova O B et al Phys. Solid State 54 1374 (2012)
  8. Dmitriev A I, Talantsev A D et al Russ Chem Bull 60 1051 (2011)
  9. Morgunov R B, Dmitriev A I Phys. Solid State 51 1985 (2009)
  10. Dmitriev V M, Khlybov E P et al 34 757 (2008)
  11. Okulov V I, Govorkova T E et al 33 207 (2007)
  12. Nesmelova I M, Ryzhkov V N et al 30 904 (2004)
  13. Bryksa V P Semicond. Phys. Quantum Electron. Optoelectron. 7 119 (2004)
  14. Ivanov V A, Aminov T G et al Russ Chem Bull 53 2357 (2004)
  15. Nesmelova I M, Baryshev N S, Andreev V A Semiconductors 36 45 (2002)
  16. Gurzhi R N, Kalinenko A N et al 27 985 (2001)
  17. Fal’ko V L, Khankina S I, Yakovenko V M Radiophys Quantum Electron 43 34 (2000)
  18. Kulbachinskii V A, Churilov I A et al Semiconductors 32 49 (1998)
  19. Belogorokhov A I, Kul’bachinskii V A et al Semiconductors 32 488 (1998)
  20. Kul’bachinskii V A, Churilov I A et al J. Exp. Theor. Phys. 85 989 (1997)
  21. Tsidilkovski I M Springer Series In Solid-State Sciences Vol. Electron Spectrum of Gapless SemiconductorsConclusion116 Chapter 6 (1997) p. 231
  22. Lakhno V D Uspekhi Fizicheskikh Nauk 166 717 (1996)
  23. Avakyants L P, Veliyulin E I et al Solid State Communications 95 63 (1995)
  24. Mazur Yu I, Tarasov G G et al Infrared Physics & Technology 36 929 (1995)
  25. Germanenko A V, Minkov G M Physica Status Solidi (b) 184 9 (1994)
  26. Belyaev A E, Komirenko S M et al Semicond. Sci. Technol. 9 1176 (1994)
  27. Shen J, Zheng G et al Solid State Communications 85 57 (1993)
  28. Chudinov S M, Yu R D et al Physica Status Solidi (b) 175 213 (1993)
  29. Kossut J, Dobrowolski W Handbook Of Magnetic Materials Vol. 7 (1993) p. 231
  30. Chudinov S M, Kulbachinskii V A et al Solid State Communications 84 531 (1992)
  31. Chudinov S M, Mancini G, Stizza S Physica Status Solidi (b) 174 199 (1992)
  32. Dietl T Semimagnetic Semiconductors and Diluted Magnetic Semiconductors Chapter 4 (1991) p. 83
  33. Gavaleshko N N, Mar’yanchuk P D, Paranchich S Yu Soviet Physics Journal 34 702 (1991)
  34. SEILER DAVID G, STEPHENS ANTHONY E Modern Problems In Condensed Matter Sciences Vol. Landau Level SpectroscopyThe Shubnikov–de Haas Effect in Semiconductors: A Comprehensive Review of Experimental Aspects27 (1991) p. 1031
  35. Krenn H, Kaltenegger K et al Phys. Rev. B 39 10918 (1989)
  36. Karyagin V V, Lyapilin I I Physica Status Solidi (b) 156 235 (1989)
  37. Wu G Y, McGill T C et al Phys. Rev. B 39 6060 (1989)
  38. Lyapilin I I, Karyagin V V Physica Status Solidi (b) 153 263 (1989)
  39. Brandt N B, Ismailov Zh T et al Soviet Physics Journal 32 889 (1989)
  40. Quintero M, Sagredo V et al Solid State Communications 64 407 (1987)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions