Issues

 / 

1985

 / 

May

  

Reviews of topical problems


Narrow-gap semimagnetic semiconductors

The good solubility of Mn atoms in a matrix based on gapless semiconductors HgTe, HgSe makes it possible to reconstruct smoothly the band structure of solid solutions Hg$_{1–x}$Mn$_x$Te and Hg$_{1–x}$Mn$_x$Se from the inverted gapless structure to the usual semiconductor structure with a finite energy gap between the valence band and the conduction band. The presence in solid solutions of substitution atoms (Mn) with an uncompensated magnetic moment leads to a significant change in the band spectrum in a magnetic field, which depends on the state of the magnetic subsystem of the impurity ions. All this gives rise to a very specific behavior of the kinetic coefficients in charge-transport phenomena in the region of strong magnetic fields and of magnetooptical phenomena at low temperatures. Such "anomalous" properties as the splitting of the peaks of the Shubnikov-de Haas oscillations as the temperature is increased, the nonmonotonic temperature dependence of the amplitudes of these peaks, the sensitivity to temperature of the spectra of magneto-absorption and other phenomena can be successfully explained only by taking into account the magnetization of the band charge carriers by the molecular field of the localized electrons of the Mn ions. The magnetic properties of semimagnetic semiconductors have also turned out to be quite unique. Thus, in these crystals a concentration transition is observed from a paramagnetic phase into a spin-glass phase. The review presents the most important and significant results of the investigations of gapless and narrow-gap semimagnetic semiconductors obtained recently.

Fulltext pdf (1 MB)
Fulltext is also available at DOI: 10.1070/PU1985v028n05ABEH003799
PACS: 71.20.Nr, 75.50.Pp, 75.30.Kz, 75.60.Ej, 78.20.Ls, 72.20.My (all)
DOI: 10.1070/PU1985v028n05ABEH003799
URL: https://ufn.ru/en/articles/1985/5/c/
Citation: Lyapilin I I, Tsidil’kovskii I M "Narrow-gap semimagnetic semiconductors" Sov. Phys. Usp. 28 349–371 (1985)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Îðèãèíàë: Ëÿïèëèí È È, Öèäèëüêîâñêèé È Ì «Óçêîùåëåâûå ïîëóìàãíèòíûå ïîëóïðîâîäíèêè» ÓÔÍ 146 35–72 (1985); DOI: 10.3367/UFNr.0146.198505c.0035

Cited by (40) ↓ Similar articles (20)

  1. Erenburg S B, Trubina S V et al J. Exp. Theor. Phys. 128 (2) 303 (2019)
  2. Veinger A I, Tisnek T V et al Semiconductors 51 (2) 163 (2017)
  3. Gheorghitza E I, Ivanov-Omskii V I, Postolaki I T Nanostructures and Thin Films for Multifunctional Applications NanoScience And Technology Chapter 8 (2016) p. 267
  4. Kurilovich P D, Kurilovich V D, Burmistrov I S Phys. Rev. B 94 (15) (2016)
  5. Greshnov A A, Vasil’ev Yu B et al Jetp Lett. 97 (2) 102 (2013)
  6. Seyid-Rzayeva S M Physica E: Low-dimensional Systems And Nanostructures 44 (9) 1945 (2012)
  7. Aplesnin S S, Romanova O B et al Phys. Solid State 54 (7) 1374 (2012)
  8. Dmitriev A I, Talantsev A D et al Russ Chem Bull 60 (6) 1051 (2011)
  9. Morgunov R B, Dmitriev A I Phys. Solid State 51 (10) 1985 (2009)
  10. Dmitriev V M, Khlybov E P et al Low Temperature Physics 34 (9) 757 (2008)
  11. Okulov V I, Govorkova T E et al Low Temperature Physics 33 (2) 207 (2007)
  12. Nesmelova I M, Ryzhkov V N et al Low Temperature Physics 30 (11) 904 (2004)
  13. Bryksa V P Semicond. Phys. Quantum Electron. Optoelectron. 7 (2) 119 (2004)
  14. Ivanov V A, Aminov T G et al Russ Chem Bull 53 (11) 2357 (2004)
  15. Nesmelova I M, Baryshev N S, Andreev V A Semiconductors 36 (1) 45 (2002)
  16. Gurzhi R N, Kalinenko A N et al Low Temperature Physics 27 (11) 985 (2001)
  17. Fal’ko V L, Khankina S I, Yakovenko V M Radiophys Quantum Electron 43 (1) 34 (2000)
  18. Kulbachinskii V A, Churilov I A et al Semiconductors 32 (1) 49 (1998)
  19. Belogorokhov A I, Kul’bachinskii V A et al Semiconductors 32 (5) 488 (1998)
  20. Kul’bachinskii V A, Churilov I A et al J. Exp. Theor. Phys. 85 (5) 989 (1997)
  21. Tsidilkovski I M Springer Series In Solid-State Sciences Vol. Electron Spectrum of Gapless SemiconductorsConclusion116 Chapter 6 (1997) p. 231
  22. Lakhno V D Uspekhi Fizicheskikh Nauk 166 (7) 717 (1996)
  23. Avakyants L P, Veliyulin E I et al Solid State Communications 95 (1) 63 (1995)
  24. Mazur Yu I, Tarasov G G et al Infrared Physics & Technology 36 (6) 929 (1995)
  25. Germanenko A V, Minkov G M Physica Status Solidi (b) 184 (1) 9 (1994)
  26. Belyaev A E, Komirenko S M et al Semicond. Sci. Technol. 9 (6) 1176 (1994)
  27. Shen J, Zheng G et al Solid State Communications 85 (1) 57 (1993)
  28. Chudinov S M, Yu R D et al Physica Status Solidi (b) 175 (1) 213 (1993)
  29. Kossut J, Dobrowolski W Handbook Of Magnetic Materials Vol. 7 (1993) p. 231
  30. Chudinov S M, Kulbachinskii V A et al Solid State Communications 84 (5) 531 (1992)
  31. Chudinov S M, Mancini G, Stizza S Physica Status Solidi (b) 174 (1) 199 (1992)
  32. Dietl T Semimagnetic Semiconductors and Diluted Magnetic Semiconductors Chapter 4 (1991) p. 83
  33. Gavaleshko N N, Mar’yanchuk P D, Paranchich S Yu Soviet Physics Journal 34 (8) 702 (1991)
  34. SEILER DAVID G, STEPHENS ANTHONY E Modern Problems In Condensed Matter Sciences Vol. Landau Level SpectroscopyThe Shubnikov–de Haas Effect in Semiconductors: A Comprehensive Review of Experimental Aspects27 (1991) p. 1031
  35. Krenn H, Kaltenegger K et al Phys. Rev. B 39 (15) 10918 (1989)
  36. Karyagin V V, Lyapilin I I Physica Status Solidi (b) 156 (1) 235 (1989)
  37. Wu G Y, McGill T C et al Phys. Rev. B 39 (9) 6060 (1989)
  38. Lyapilin I I, Karyagin V V Physica Status Solidi (b) 153 (1) 263 (1989)
  39. Brandt N B, Ismailov Zh T et al Soviet Physics Journal 32 (11) 889 (1989)
  40. Quintero M, Sagredo V et al Solid State Communications 64 (4) 407 (1987)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions