Issues

 / 

1985

 / 

December

  

Methodological notes


The dimer problem and the Kirchhoff theorem

Application of the Kirchhoff theorem to lattice statistics leads to solution of the two-dimensional dimer problem, earlier obtained by the Pfaffian method. It is shown that the relation between the theory of network of linear resistors and the dimer problem is particularly useful in the threedimensional case. A number of dimer configurations on a decorated diamond lattice is found by calculating spanning trees on the corresponding lattice. The Kirchhoff theorem is proved in the spirit of the combinatorical solution of the Ising model.

Fulltext pdf (470 KB)
Fulltext is also available at DOI: 10.1070/PU1985v028n12ABEH003987
PACS: 05.50.+q, 02.10.Yn, 02.10.Ox, 61.50.Ah (all)
DOI: 10.1070/PU1985v028n12ABEH003987
URL: https://ufn.ru/en/articles/1985/12/c/
Citation: Priezzhev V B "The dimer problem and the Kirchhoff theorem" Sov. Phys. Usp. 28 1125–1135 (1985)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Приезжев В Б «Задача о димерах и теорема Кирхгофа» УФН 147 747–765 (1985); DOI: 10.3367/UFNr.0147.198512c.0747

Cited by (21) Similar articles (7) ↓

  1. B.M. Smirnov “Clusters with close packingSov. Phys. Usp. 35 (1) 37–48 (1992)
  2. Ya.M. Blanter, M.I. Kaganov, D.V. Posvyanskii “De Haas-van Alphen effect as a first-order electronic topological transitionPhys. Usp. 38 203–209 (1995)
  3. V.A. Davydov, V.G. Morozov “Galilean transformations and evolution of autowave fronts in external fieldsPhys. Usp. 39 305–311 (1996)
  4. Z.G. Bazhanova, V.V. Roizen, A.R. Oganov “High-pressure behavior of the Fe—S system and composition of the Earth's inner corePhys. Usp. 60 1025–1032 (2017)
  5. V.D. Shafranov “Virial theorem for a system of charged particlesSov. Phys. Usp. 22 368–370 (1979)
  6. A.I. Akhiezer, R.V. Polovin “Why IT IS impossible to introduce hidden parameters into quantum mechanicsSov. Phys. Usp. 15 500–512 (1973)
  7. M.O. Katanaev “Killing vector fields and a homogeneous isotropic universePhys. Usp. 59 689–700 (2016)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions