Processing math: 100%

Issues

 / 

1984

 / 

June

  

Reviews of topical problems


The Monte Carlo method in lattice gauge theories


Russian Federation State Scientific Center ‘A.I. Alikhanov Institute of Theoretical and Experimental Physics’, ul. Bolshaya Cheremushkinskaya 25, Moscow, 117259, Russian Federation

Applications of the Monte Carlo method in lattice gauge theories, including applications in quantum chromodynamics, are reviewed. The lattice formulation of gauge theories, the corresponding concepts, and the corresponding methods are introduced. The Monte Carlo method as it is applied to lattice gauge theories is described. Some specific calculations by the Monte Carlo method and their results are examined. The phase structure of lattice gauge theories with Abelian groups ZN and U(1) (a lattice formulation of a compact electrodynamics) is discussed. The non-Abelian groups SU(2), SU(3) (a lattice formulation of quantum chromodynamics), and others are also discussed. The procedure for calculating quantities referring to the continuum limit by the Monte Carlo method is discussed for quantum chromodynamics. A detailed analysis is made of results calculated for the continuum theory: string tensions and interaction potentials, which show that quarks are confined; glueball mass spectra; and the temperature of the transition from the phase of hadronic matter to the phase of a quark-gluon plasma. Masses calculated for hadrons consisting of quarks are briefly discussed.

Fulltext pdf (1.3 MB)
Fulltext is also available at DOI: 10.1070/PU1984v027n06ABEH004172
PACS: 11.15.Ha, 12.38.Gc, 12.20.Ds, 11.30.Ly, 12.38.Aw (all)
DOI: 10.1070/PU1984v027n06ABEH004172
URL: https://ufn.ru/en/articles/1984/6/a/
Citation: Makeenko Yu M "The Monte Carlo method in lattice gauge theories" Sov. Phys. Usp. 27 401–430 (1984)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Макеенко Ю М «Метод Монте-Карло в калибровочных теориях на решетке» УФН 143 161–212 (1984); DOI: 10.3367/UFNr.0143.198406a.0161

Cited by (15) Similar articles (20) ↓

  1. A.A. Migdal “Stochastic quantization of field theorySov. Phys. Usp. 29 389–411 (1986)
  2. M.I. Polikarpov “Fractals, topological defects, and confinement in lattice gauge theoriesPhys. Usp. 38 591–607 (1995)
  3. I.V. Andreev “Chromodynamics as a theory of the strong interactionSov. Phys. Usp. 29 971–979 (1986)
  4. D.S. Kuz’menko, Yu.A. Simonov, V.I. Shevchenko “Vacuum, confinement, and QCD strings in the vacuum correlator methodPhys. Usp. 47 1–15 (2004)
  5. K.L. Zarembo, Yu.M. Makeenko “An introduction to matrix superstring modelsPhys. Usp. 41 1–23 (1998)
  6. A.A. Bykov, I.M. Dremin, A.V. Leonidov “Potential models of quarkoniumSov. Phys. Usp. 27 321–338 (1984)
  7. M.A. Shifman “Anomalies and low-energy theorems of quantum chromodynamicsSov. Phys. Usp. 32 289–309 (1989)
  8. V.I. Zakharov “Lattice SU(2) theory projected on scalar particlesPhys. Usp. 47 37–44 (2004)
  9. Ya.I. Azimov, Yu.L. Dokshitser, V.A. Khoze “GluonsSov. Phys. Usp. 23 732–749 (1980)
  10. Yu.A. Simonov “The confinementPhys. Usp. 39 313–336 (1996)
  11. A.Yu. Morozov “Anomalies in gauge theoriesSov. Phys. Usp. 29 993–1039 (1986)
  12. V.P. Kandidov “Monte Carlo method in nonlinear statistical opticsPhys. Usp. 39 1243–1272 (1996)
  13. V.A. Matveev, V.A. Rubakov et alNonconservation of baryon number under extremal conditionsSov. Phys. Usp. 31 916–939 (1988)
  14. V.G. Bornyakov, M.I. Polikarpov et alColor confinement and hadron structure in lattice chromodynamicsPhys. Usp. 47 17–35 (2004)
  15. I.K. Kamilov, A.K. Murtazaev, Kh.K. Aliev “Monte Carlo studies of phase transitions and critical phenomenaPhys. Usp. 42 689–709 (1999)
  16. I.Z. Fisher “Applications of the monte carlo method in statistical physicsSov. Phys. Usp. 2 783–796 (1960)
  17. A.I. Vainshtein, M.B. Voloshin et alCharmonium and quantum chromodynamicsSov. Phys. Usp. 20 796–818 (1977)
  18. V.A. Novikov “Nonperturbative QCD and supersymmetric QCDPhys. Usp. 47 109–116 (2004)
  19. S.S. Gershtein, E.P. Kuznetsov, V.A. Ryabov “The nature of neutrino mass and the phenomenon of neutrino oscillationsPhys. Usp. 40 773–806 (1997)
  20. S.G. Matinyan “Toward the unification of weak, electromagnetic, and strong interactions: SU(5)Sov. Phys. Usp. 23 1–20 (1980)

The list is formed automatically.

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions