Reviews of topical problems

Electrical activity of the brain: Mechanisms and interpretation

Physical analogies are used to develop ideas on the origin of spontaneous oscillations in the electrical activity of the human brain and on the variation in these oscillations that accompany changes of state and of type of activity. A possible functional role of such oscillations in the overall activity of the brain and mechanisms responsible for certain pathologies of brain activity are examined. Existing phenomenology and current hypotheses are used as a basis for suggesting that: 1) spontaneous rhythms on the electroencephalogram (EEG) are due to the interaction between a finite number of autogenerators (pacemakers) formed by the neuronal populations of thalamic nuclei and functional units in the cortex that exhibit the properties of a passive oscillatory loop; 2) because of its well-defined nonlinearity, the interaction between thalamic autogenerators of different natural frequency leads to the generation of a great variety of observed EEG patterns that accompany different types of brain activity (including responses to external disturbances), all of which is a consequence of recent advances in the theory of nonlinear oscillations that have led to the discovery of ``strange attractors''; 3) the subdivision in the brain of the pulsed flow of information into ``specific'' and ``nonspecific'', where the latter has a modifying influence on interactions between thalamic pacemakers and on the appearance of special multiperiodic patterns that are characteristic for different events, leads to a distributed fixation of long-term memory traces when the nonspecific and specific flows converge on a neuron memory substrate, and these traces can be read by a single characteristic multiperiodic pattern; and 4) the mechanism responsible for the appearance of paroxysmal discharges in certain specific types of epilepsy and the associated characteristic EEG phenomena (including frequency division) ensues from pathologically modified interaction between thalamic pacemakers and functional units in the cortex, which exhibits resonance properties.

Fulltext pdf (1.3 MB)
Fulltext is also available at DOI: 10.1070/PU1983v026n09ABEH004493
PACS: 87.30.Ct, 87.30.Ew
DOI: 10.1070/PU1983v026n09ABEH004493
Citation: Osovets S M, Ginzburg D A, Gurfinkel’ V S, Zenkov L R, Latash L P, Malkin V B, Mel’nichuk P V, Pasternak E B "Electrical activity of the brain: Mechanisms and interpretation" Sov. Phys. Usp. 26 801–828 (1983)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Осовец С М, Гинзбург Д А, Гурфинкель В С, Зенков Л Р, Латаш Л П, Малкин В Б, Мельничук П В, Пастернак Е Б «Электрическая активность мозга: механизмы и интерпретация» УФН 141 103–150 (1983); DOI: 10.3367/UFNr.0141.198309c.0103

Cited by (28) Similar articles (20) ↓

  1. H.D. Abarbanel, M.I. Rabinovich et alSynchronisation in neural networks39 337–362 (1996)
  2. B.N. Belintsev “Dissipative structures and the problem of biological pattern formation26 775–800 (1983)
  3. G.R. Ivanitskii, A.B. Medvinskii, M.A. Tsyganov “From the dynamics of population autowaves generated by living cells to neuroinformatics37 961–989 (1994)
  4. N.M. Astaf’eva “Wavelet analysis: basic theory and some applications39 1085–1108 (1996)
  5. G.N. Borisyuk, R.M. Borisyuk et alModels of neural dynamics in brain information processing — the developments of ’the decade’45 1073–1095 (2002)
  6. M.I. Rabinovich, M.K. Muezzinoglu “Nonlinear dynamics of the brain: emotion and cognition53 357–372 (2010)
  7. V.S. Markin, V.F. Pastushenko, Yu.A. Chizmadzhev “Physics of the nerve impulse20 836–860 (1977)
  8. M.I. Rabinovich, M.M. Sushchik “The regular and chaotic dynamics of structures in fluid flows33 (1) 1–35 (1990)
  9. N.G. Ptitsyna, G. Villoresi et alNatural and man-made low-frequency magnetic fields as a potential health hazard41 687–709 (1998)
  10. I.M. Dremin, O.V. Ivanov, V.A. Nechitailo “Wavelets and their uses44 447–478 (2001)
  11. V.P. Tychinskii “Dynamic phase microscopy: is a “dialogue” with the cell possible?50 513–528 (2007)
  12. S.M. Osovets “Dynamic methods of confinement and stabilization of hot plasma17 239–262 (1974)
  13. V.D. Buchel’nikov, N.K. Dan’shin et alOn the relative contributions of precessional and longitudinal oscillations to the dynamics of magnets42 957–990 (1999)
  14. A.E. Hramov, N.S. Frolov et alFunctional networks of the brain: from connectivity restoration to dynamic integration64 584–616 (2021)
  15. A.N. Pavlov, A.E. Hramov et alWavelet analysis in neurodynamics55 845–875 (2012)
  16. S.N. Gurbatov, A.I. Saichev, I.G. Yakushkin “Nonlinear waves and one-dimensional turbulence in nondispersive media26 857–876 (1983)
  17. K.I. Kugel’, D.I. Khomskii “The Jahn-Teller effect and magnetism: transition metal compounds25 231–256 (1982)
  18. S.V. Vorontsov, V.N. Zharkov “Free oscillations of the sun and the giant planets24 697–716 (1981)
  19. D.I. Khomskii “The problem of intermediate valency22 879–903 (1979)
  20. I.G. Kaplan, O.B. Rodimova “Intermolecular interactions21 918–943 (1978)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions