Issues

 / 

1983

 / 

August

  

Reviews of topical problems


Intensity-fluctuation spectroscopy of optical fields with non-Gaussian statistics

Intensity-fluctuation spectroscopy (IPS) is usually considered to be complementary to conventional spectroscopy and capable of removing technical restrictions on the resolving power. However, the information provided by field spectroscopy is identical to that obtained by IFS only for fields with Gaussian statistics. For non-Gaussian fields, IFS yields essentially new information, and the present review is devoted to this aspect of IFS. It surveys experiments concerned with the investigation of the noise spectrum of resonance fluorescence and of coherent forward scattering by an atomic vapor, which provide data on the width and the structure of levels involved in atomic transitions under the conditions of dominant Doppler broadening. Fundamental and technical limitations of the method are examined. Analogous studies of fluctuation spectra of radiation scattered by macroparticles in liquids can be used to determine the time dependence of the particle form factor independently of the characteristics of translational diffusion.

Fulltext pdf (931 KB)
Fulltext is also available at DOI: 10.1070/PU1983v026n08ABEH004481
PACS: 07.65.Eh, 35.80.+s, 32.50.+d, 61.16.-d
DOI: 10.1070/PU1983v026n08ABEH004481
URL: https://ufn.ru/en/articles/1983/8/a/
Citation: Aleksandrov E B, Golubev Yu M, Lomakin A V, Noskin V A "Intensity-fluctuation spectroscopy of optical fields with non-Gaussian statistics" Sov. Phys. Usp. 26 643–663 (1983)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Александров Е Б, Голубев Ю М, Ломакин А В, Носкин В А «Спектроскопия флуктуаций интенсивности оптических полей с негауссовой статистикой» УФН 140 547–582 (1983); DOI: 10.3367/UFNr.0140.198308a.0547

Cited by (20) ↓ Similar articles (20)

  1. Starshinov N  S, Belinsky A  V, Fedotov A  B Bull. Lebedev Phys. Inst. 51 S58 (2024)
  2. Kozlov G G, Ryzhov I I et al Uspekhi Fizicheskikh Nauk 194 268 (2024)
  3. [Kozlov G G, Ryzhov I I et al Phys. Usp. 67 251 (2024)]
  4. Liu S, Neveu P et al Phys. Rev. A 107 (2) (2023)
  5. Fomin A A, Petrov M Yu et al Phys. Rev. Research 2 (1) (2020)
  6. Misochko O V, Lebedev M V J. Exp. Theor. Phys. 126 64 (2018)
  7. Misochko O V, Lebedev M V J. Exp. Theor. Phys. 120 651 (2015)
  8. Glazov M M, Zapasskii V S Opt. Express 23 11713 (2015)
  9. Zapasskii V S Adv. Opt. Photon. 5 131 (2013)
  10. Aleksandrov E B, Zapasskii V S J. Phys.: Conf. Ser. 324 012002 (2011)
  11. Critical Behavior of Non‐Ideal Systems 1 (2008) p. 229
  12. Dravins D Astrophysics And Space Science Library Vol. High Time Resolution AstrophysicsPhotonic Astronomy and Quantum Optics351 Chapter 6 (2007) p. 95
  13. Bochkov G N, Gorokhov K V, Dubkov A A Radiophys Quantum Electron 48 142 (2005)
  14. Lomakin A Appl. Opt. 40 4079 (2001)
  15. Batygin V V, Kupriyanov D V, Sokolov I M Quantum Semiclass. Opt. 9 529 (1997)
  16. Batygin V V, Kupriyanov D V, Sokolov I M Quantum Semiclass. Opt. 9 559 (1997)
  17. Burkitbaev S M, Divari I N, Kushnir V P J Appl Spectrosc 51 677 (1989)
  18. Kolobov M I, Sokolov I V Physics Letters A 140 101 (1989)
  19. Blazhenkov V V, Vlasenko V V et al J Appl Mech Tech Phys 28 185 (1987)
  20. Veklenko B A Soviet Physics Journal 30 555 (1987)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions