Issues

 / 

1982

 / 

October

  

Reviews of topical problems


Phase conjugation in stimulated scattering

 a, b, ,
a University Academic Division of Nonlinear Optics, Institute of Electro-Physics of the Ural Division of the Russian Academy of Sciences, pr. Lenina 76, Chelyabinsk, 454010, Russian Federation
b College of Optics and Photonics/CREOL, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida, 32816-2700, USA

Various aspects of optical phase conjugation are discussed: the properties of the conjugate wave, its potential applications, the basic conjugation methods, and a brief history of the question. The theory for phase conjugation in stimulated scattering is set forth in detail. The basic experimental results on this conjugation method are also discussed in detail. Phase conjugation occurs because that configuration of the back-scattered field which has the conjugate wavefront is amplified to the greatest extent (at a doubled gain) in the intense speckle-inhomogeneous conjugate wave in a medium in which stimulated scattering occurs. Because of the large overall amplification in stimulated scattering, all the other, uncorrelated, configurations of the spontaneously scattered nucleating waves are amplified by a factor of 10$^7$ less and are discriminated against. The intervals of values of the various parameters in which the conjugate configuration (the specklon) exists are discussed theoretically, as is the effect of nonlinear selection and saturation on phase conjugation in stimulated scattering. There is a review of experimental results on the first observation of the effect, on the measurement of the angular structure of the uncorrelated waves and of the extent to which they are discriminated against, on the phase fluctuations of the conjugate wave, on the conjugation of subthreshold and depolarized radiation, and on phase conjugation in stimulated scattering in focused beams and for other scattered-wave amplification mechanisms.

Fulltext pdf (1.2 MB)
Fulltext is also available at DOI: 10.1070/PU1982v025n10ABEH004605
PACS: 03.40.Kf, 42.10.-s
DOI: 10.1070/PU1982v025n10ABEH004605
URL: https://ufn.ru/en/articles/1982/10/a/
Citation: Zel’dovich B Ya, Pilipetskii N F, Shkunov V V "Phase conjugation in stimulated scattering" Sov. Phys. Usp. 25 713–737 (1982)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Зельдович Б Я, Пилипецкий Н Ф, Шкунов В В «Обращение волнового фронта при вынужденном рассеянии света» УФН 138 249–288 (1982); DOI: 10.3367/UFNr.0138.198210d.0249

Cited by (46) ↓ Similar articles (20)

  1. Shoydin S A, Kovalev M S Opt. Spectrosc. 128 885 (2020)
  2. Liu J, Gai B et al Optics & Laser Technology 101 68 (2018)
  3. Hüller S, Porzio A, Robiche J New J. Phys. 15 025003 (2013)
  4. Omatsu T, Kong H J et al Laser Part. Beams 30 117 (2012)
  5. Rose H A, Mounaix P 18 (4) (2011)
  6. Zhu C Y, Lu Z W, He W M Laser Part. Beams 27 681 (2009)
  7. Hasi W, Lü ZhiWei et al SCI CHINA SER G 50 144 (2007)
  8. Wu-Li-Ji H, Zhi-Wei L et al Chinese Phys. 16 1385 (2007)
  9. Sherstobitov V E Optical Resonators — Science and Engineering Chapter 8 (1998) p. 119
  10. Osipov V Yu Tech. Phys. 43 1075 (1998)
  11. Sokolovskaya A I J Russ Laser Res 19 244 (1998)
  12. Eichler H J, K�nig R et al Appl. Phys. B 61 73 (1995)
  13. Nolte D D Photorefractive Effects and Materials Chapter 1 (1995) p. 1
  14. Hilfer G, Menyuk C R, Reintjes J J. Opt. Soc. Am. B 10 67 (1993)
  15. Kummrow A Optics Communications 96 185 (1993)
  16. Hilfer G, Menyuk C R Opt. Lett. 17 949 (1992)
  17. Ivanauskas F Lith Math J 31 417 (1992)
  18. Ivanauskas F F Lith Math J 30 106 (1991)
  19. Kuo Yu-Sh, Choi K, McIver J K Optics Communications 80 233 (1991)
  20. Davis G M, Gower M C IEEE J. Quantum Electron. 27 496 (1991)
  21. Ivanauskas F Lith Math J 30 240 (1991)
  22. Kummrow A, Meng H Optics Communications 83 342 (1991)
  23. Yakimovich A P Radiophys Quantum Electron 32 234 (1989)
  24. Krumins A, Ringhofer K H et al Ferroelectrics 89 155 (1989)
  25. MASSON B, JUMPER E et al 20th Fluid Dynamics, Plasma Dynamics and Lasers Conference, (1989)
  26. Zeldovich B Ya, Shkunov V V Appl. Opt. 27 1635 (1988)
  27. Rockwell D A IEEE J. Quantum Electron. 24 1124 (1988)
  28. Mezenov A V, Soms L N, Stepanov A I J Russ Laser Res 8 427 (1987)
  29. Damzen M J, Hutchinson M H R, Schroeder W A Opt. Lett. 12 45 (1987)
  30. Günter P, Eichler H J Springer Proceedings In Physics Vol. Electro-optic and Photorefractive MaterialsIntroduction to Photorefractive Materials18 Chapter 17 (1987) p. 206
  31. Flusberg A, Korff D J. Opt. Soc. Am. B 4 687 (1987)
  32. Eichler H J, Günter P, Pohl D W Springer Series In Optical Sciences Vol. Laser-Induced Dynamic GratingsReal-Time Holography and Phase Conjugation50 Chapter 6 (1986) p. 159
  33. Valley G IEEE J. Quantum Electron. 22 704 (1986)
  34. Zhang G, Li Q-X et al Appl. Opt. 25 2955 (1986)
  35. Bunkin F V, Kravtsov Yu A, Lyakhov G A Uspekhi Fizicheskikh Nauk 149 391 (1986)
  36. Suni P, Falk J J. Opt. Soc. Am. B 3 1681 (1986)
  37. Zel’dovich B Ya, Shkunov V V, Yakovleva T V Uspekhi Fizicheskikh Nauk 149 511 (1986)
  38. Zel’dovich B Ya, Pilipetsky N F, Shkunov V V Springer Series In Optical Sciences Vol. Principles of Phase ConjugationOPC by Backward Stimulated Scattering42 Chapter 4 (1985) p. 85
  39. Damzen M J, Hutchinson M H R Opt. Lett. 10 40 (1985)
  40. PEPPER DAVID M Laser Handbook (1985) p. 333
  41. Zel’dovich B Ya, Pilipetsky N F, Shkunov V V Springer Series In Optical Sciences Vol. Principles of Phase ConjugationIntroduction to Optical Phase Conjugation42 Chapter 1 (1985) p. 1
  42. Lukin V P, Charnotskii M I Soviet Physics Journal 28 894 (1985)
  43. Gower M C Progress In Quantum Electronics 9 101 (1984)
  44. Reshetzky V I J. Phys. C: Solid State Phys. 17 5887 (1984)
  45. Arutunyan V M, Agadjanyan S A et al Optics Communications 50 123 (1984)
  46. Alt’shuler G B, Ermolaev V S et al Optics Communications 51 217 (1984)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions