Issues

 / 

1980

 / 

July

  

Reviews of topical problems


Collisional diffusion of a partially-ionized plasma in a magnetic field

,  a
a St. Petersburg State Polytechnical University, Politekhnicheskaya str. 29, St. Petersburg, 195251, Russian Federation

The principal mechanisms of classical diffusion (due to binary collisions) of a partially-ionized plasma in a homogeneous magnetic field are examined. As a result of anisotropy of the transport coefficients of charged particles the problem proves to be far more complicated than the well-known problem of ambipolar diffusion in the absence of a magnetic field. The evolution of diffusion in this case is determined primarily by eddy currents flowing in the plasma. The circuit for these currents can be completed both through the background plasma giving rise to depletion regions, and by the conducting walls of the container of the plasma (the short-circuit effect). Ambipolar diffusion which occurs when the electron and ion fluxes are equal at every point can be realized only in exceptional cases. Experiments are described in which the short-circuit effect and ambipolar diffusion were observed. Using different boundary conditions it was possible to vary the diffusion rate of the plasma by two or three orders of magnitude, and this presents the possibility of controlling the local parameters of the plasma. This review has taken into account references up to July, 1979.

Fulltext pdf (1.4 MB)
Fulltext is also available at DOI: 10.1070/PU1980v023n07ABEH004951
PACS: 52.25.Fi
DOI: 10.1070/PU1980v023n07ABEH004951
URL: https://ufn.ru/en/articles/1980/7/b/
Citation: Zhilinskii A P, Tsendin L D "Collisional diffusion of a partially-ionized plasma in a magnetic field" Sov. Phys. Usp. 23 331–355 (1980)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Жилинский А П, Цендин Л Д «Столкновительная диффузия частично ионизованной плазмы в магнитном поле» УФН 131 343–385 (1980); DOI: 10.3367/UFNr.0131.198007b.0343

Cited by (32) ↓ Similar articles (20)

  1. Shirokov E A Radiophys Quantum El 63 921 (2021)
  2. Yuan C, Kurlyandskaya I P et al Plasma Phys. Control. Fusion 63 093001 (2021)
  3. Shesterikov I, Crombe K, Noterdaeme J -M 26 (9) (2019)
  4. Aidakina N, Gushchin M et al 25 (12) (2018)
  5. Aidakina N, Gushchin M et al 25 (7) (2018)
  6. Zhang Yu, Charles Ch, Boswell R J. Phys. D: Appl. Phys. 50 015205 (2017)
  7. Loureiro J, Amorim Ja Kinetics and Spectroscopy of Low Temperature Plasmas Graduate Texts In Physics Chapter 6 (2016) p. 233
  8. Zhang Yu, Charles Ch, Boswell R 23 (8) (2016)
  9. Shirokov E A, Chugunov Yu V Radiophys Quantum El 59 22 (2016)
  10. Shivarova A, Lishev S et al 22 (10) (2015)
  11. Zhang Yu, Charles Ch, Boswell R 22 (7) (2015)
  12. Das B K, Hazarika P et al 21 (7) (2014)
  13. Levko D, Garrigues L, Hagelaar G J M 21 (8) (2014)
  14. Teolis B D, Sillanpää I et al JGR Space Physics 119 8881 (2014)
  15. Curreli D, Chen F F Plasma Sources Sci. Technol. 23 064001 (2014)
  16. Zhang Yu, Charles Ch, Boswell R 21 (6) (2014)
  17. Momot A I Physics Of Plasmas 20 073703 (2013)
  18. Tsendin L D Plasma Sources Sci. Technol. 20 055011 (2011)
  19. Fruchtman A 17 (2) (2010)
  20. Fruchtman A Plasma Sources Sci. Technol. 18 025033 (2009)
  21. Ionosphere and Applied Aspects of Radio Communication and Radar (2008) p. 139
  22. Kostrov A V, Nazarov V V, Starodubtsev M V Radiophys Quantum El 50 665 (2007)
  23. Vaulina O S, Nefedov A P et al Phys. Rev. Lett. 88 (3) (2002)
  24. Kostrov A V, Kudrin A V et al Phys. Scr. 62 51 (2000)
  25. Vidal F, Johnston T W et al IEEE Trans. Plasma Sci. 27 727 (1999)
  26. Erukhimov L M, Myasnikov E N Radiophys Quantum Electron 41 125 (1998)
  27. Kondrat’ev I G, Kudrin A V, Zaboronkova T M Journal Of Atmospheric And Solar-Terrestrial Physics 59 2475 (1997)
  28. Beilinson L L, Rozhansky V A, Tsendin L D Phys. Rev. E 50 3033 (1994)
  29. Margot J, Moisan M NATO ASI Series Vol. Microwave DischargesModeling of Surface-Wave-Sustained Plasmas in Static Magnetic Fields: A Tool for the Study of Magnetically Assisted HF Plasmas302 Chapter 10 (1993) p. 141
  30. Sverdlov Yu L Radiophys Quantum Electron 31 573 (1988)
  31. Gel’berg M G, Fedorov V P Radiophys Quantum Electron 31 286 (1988)
  32. Levitskii S M, Abdrakhmanov N, timchenko V P Radiophys Quantum Electron 25 883 (1982)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions