Reviews of topical problems

The dielectric constant of an interacting electron gas

,  a
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

A simple method is proposed for finding the local-field correction to the dielectric constant of a system of interacting electrons. In this method, the local distortion of the mean induced density near an individual electron owing to exchange-correlation effects is automatically taken into account by determining the self-consistent potential at the given space-time point under the extra condition that one of the electrons of the system lies at that point. The stated method for accounting for exchange-correlation effects is initially developed within the framework of the single-particle approximation, and then is generalized to the case of analyzing the complete many-electron problem. By using it one can easily reproduce most of the currently known results on the dielectric constant, including those derived by the powerful methods of many-body theory. This study analyzes the contemporary state of the theory of the dielectric constant of an interacting electron gas and briefly presents an application of this theory for describing the physical properties of simple metals.

PACS: 05.30.Fk, 71.45.Gm (all)
DOI: 10.1070/PU1980v023n01ABEH004860
Citation: Gorobchenko V D, Maksimov E G "The dielectric constant of an interacting electron gas" Sov. Phys. Usp. 23 35–58 (1980)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Горобченко В Д, Максимов Е Г «Диэлектрическая проницаемость взаимодействующего электронного газа» УФН 130 65–111 (1980); DOI: 10.3367/UFNr.0130.198001c.0065

Cited by (62) Similar articles (20) ↓

  1. E.G. Brovman, Yu.M. Kagan “Phonons in nontransition metals17 125–152 (1974)
  2. D.N. Zubarev “Double-time Green functions in statistical physics3 320–345 (1960)
  3. O.V. Dolgov, E.G. Maksimov “Transition temperature of strong-coupling superconductors25 688–704 (1982)
  4. D.A. Kirzhnits “General properties of electromagnetic response functions30 575–587 (1987)
  5. P.K. Shukla, B. Eliasson “Nonlinear aspects of quantum plasma physics53 51–76 (2010)
  6. Yu.S. Barash, V.L. Ginzburg “Electromagnetic fluctuations in matter and molecular (Van-der- Waals) forces between them18 305–322 (1975)
  7. E.G. Maksimov, D.Yu. Savrasov, S.Yu. Savrasov “The electron-phonon interaction and the physical properties of metals40 337–358 (1997)
  8. E.G. Maksimov “High-temperature superconductivity: the current state43 965–990 (2000)
  9. V.S. Edel’man “Levitated electrons23 227–244 (1980)
  10. N.N. Bogolyubov “The compensation principle and the self-consistent field method2 236–254 (1959)
  11. M.B. Partenskii “Self-consistent electron theory of a metallic surface22 330–351 (1979)
  12. E.G. Maksimov, A.E. Karakozov “On nonadiabatic effects in phonon spectra of metals51 535–549 (2008)
  13. D.A. Kirzhnits, Yu.E. Lozovik, G.V. Shpatakovskaya “Statistical model of matter18 649–672 (1975)
  14. O.M. Braun, V.K. Medvedev “Interaction between particles adsorbed on metal surfaces32 328–348 (1989)
  15. D.K. Belashchenko “Computer simulation of liquid metals56 1176–1216 (2013)
  16. E.G. Maksimov, O.A. Pankratov “Hydrogen in metals18 481–495 (1975)
  17. O.E. Kvyatkovskii, E.G. Maksimov “Microscopic theory of the lattice dynamics and the nature of the ferroelectric instability in crystals31 1–26 (1988)
  18. D.A. Trunin “Pedagogical introduction to the Sachdev—Ye—Kitaev model and two-dimensional dilaton gravity64 219–252 (2021)
  19. É.L. Nagaev “Ferromagnetic and antiferromagnetic semiconductors18 863–892 (1975)
  20. A.I. Golovashkin “High-temperature superconducting ceramics (review of experimental results)30 659–670 (1987)

The list is formed automatically.

© 1918–2023 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions