Issues

 / 

1979

 / 

May

  

Methodological notes


Virial theorem for a system of charged particles


National Research Centre ‘Kurchatov Institute’, pl. akad. Kurchatova 1, Moscow, 123182, Russian Federation

Two formulations of the virial theorem are used in practice: one for separate particles and one for a continuous medium. The virial theorem for a system of charged particles which was given by Landau and Lifshitz in their book \emph{The Classical Theory of Fields} should incorporate both these formulations. However, there is an error there in the derivation of this theorem, which is based on transformation from a discussion in terms of particles to a discussion in terms of a continuous medium. Specifically, the selfeffect force of the charges is not eliminated. As a result, the infinite self-energy of the charges is not eliminated, and the corresponding final equation cannot be satisfied. In the present note, a refined formulation of the virial theorem for a system of charged particles is given. The renormalization of the total electromagnetic field energy is taken into account.

Fulltext pdf (221 KB)
Fulltext is also available at DOI: 10.1070/PU1979v022n05ABEH005500
PACS: 03.50.Kk
DOI: 10.1070/PU1979v022n05ABEH005500
URL: https://ufn.ru/en/articles/1979/5/e/
Citation: Shafranov V D "Virial theorem for a system of charged particles" Sov. Phys. Usp. 22 368–370 (1979)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Îðèãèíàë: Øàôðàíîâ Â Ä «Î òåîðåìå âèðèàëà äëÿ ñèñòåìû çàðÿæåííûõ ÷àñòèö» ÓÔÍ 128 161–164 (1979); DOI: 10.3367/UFNr.0128.197905f.0161

Cited by (2) Similar articles (20) ↓

  1. S.S. Kalmykova “Mechanism of induced transition radiation in fields of regular wavesSov. Phys. Usp. 25 620–630 (1982)
  2. G.V. Skrotskii “The Landau-Lifshitz equation revisitedSov. Phys. Usp. 27 977–979 (1984)
  3. V.B. Priezzhev “The dimer problem and the Kirchhoff theoremSov. Phys. Usp. 28 1125–1135 (1985)
  4. N.P. Klepikov “Radiation damping forces and radiation from charged particlesSov. Phys. Usp. 28 506–520 (1985)
  5. V.L. Ginzburg, L.P. Pitaevskii “Quantum Nyquist formula and the applicability ranges of the Callen-Welton formulaSov. Phys. Usp. 30 168–171 (1987)
  6. B.M. Bolotovskii, S.N. Stolyarov “Law of conservation of energy for the electromagnetic field as applied to radiation by moving charged particlesSov. Phys. Usp. 35 (3) 248–254 (1992)
  7. B.M. Bolotovskii, S.N. Stolyarov “Radiation from and energy loss by charged particles in moving mediaSov. Phys. Usp. 35 (2) 143–150 (1992)
  8. A.L. Barabanov “Angular momentum in classical electrodynamicsPhys. Usp. 36 (11) 1068–1074 (1993)
  9. A.A. Logunov “The theory of the classical gravitational fieldPhys. Usp. 38 179–193 (1995)
  10. A.M. Ignatov, A.I. Korotchenko et alOn the interpretation of computer simulation of classical Coulomb plasmaPhys. Usp. 38 109–114 (1995)
  11. A.A. Logunov, M.A. Mestvirishvili, Yu.V. Chugreev “On incorrect formulations of the equivalence principlePhys. Usp. 39 73–79 (1996)
  12. V.A. Saranin “On the interaction of two electrically charged conducting ballsPhys. Usp. 42 385–390 (1999)
  13. V.A. Saranin “Electric field strength of charged conducting balls and the breakdown of the air gap between themPhys. Usp. 45 1287–1292 (2002)
  14. V.G. Veselago “Formulating Fermat’s principle for light traveling in negative refraction materialsPhys. Usp. 45 1097–1099 (2002)
  15. M.Ya. Agre “Multipole expansions in magnetostaticsPhys. Usp. 54 167–180 (2011)
  16. P.B. Ivanov “On relativistic motion of a pair of particles having opposite signs of massesPhys. Usp. 55 1232–1238 (2012)
  17. J. Gaite “The relativistic virial theorem and scale invariancePhys. Usp. 56 919–931 (2013)
  18. M.O. Katanaev “Killing vector fields and a homogeneous isotropic universePhys. Usp. 59 689–700 (2016)
  19. E.D. Trifonov “On the spin-statistics theoremPhys. Usp. 60 621–622 (2017)
  20. V.Yu. Shishkov, E.S. Andrianov et alRelaxation of interacting open quantum systemsPhys. Usp. 62 510–523 (2019)

The list is formed automatically.

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions