Issues

 / 

1975

 / 

August

  

Reviews of topical problems


Current-convective instability of a gas-discharge plasma

Among the numerous instabilities of a plasma in a magnetic field, a prominent place is occupied by the instability that sets in when a constant electric field and a constant magnetic field are applied, and is manifest in the excitation of helical plasma-concentration waves. First discovered in semiconductor and gasdischarge plasma, it exists also in a fully ionized current-carrying plasma, and its modification exists in many plasma devices. The survey covers the main theoretical and experimental investigations of this instability, performed in gas discharges. The most complete data are available for a weakly-ionized positive column, in which the development of current-convective instability is investigated in detail in a wide range, from the limit of the onset of weak linear waves up to strong turbulence. Since it has been so thoroughly investigated, current-convective instability is used as an example to study various methods of stabilizing plasma in stabilities. These methods are the subject of Chap. 8 of the article.

Fulltext pdf (627 KB)
Fulltext is also available at DOI: 10.1070/PU1975v018n08ABEH004914
PACS: 52.25.F, 52.80.D
DOI: 10.1070/PU1975v018n08ABEH004914
URL: https://ufn.ru/en/articles/1975/8/b/
Citation: Nedospasov A V "Current-convective instability of a gas-discharge plasma" Sov. Phys. Usp. 18 588–599 (1975)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Недоспасов А В «Токово-конвективная неустойчивость газоразрядной плазмы» УФН 116 643–664 (1975); DOI: 10.3367/UFNr.0116.197508e.0643

Cited by (25) ↓ Similar articles (20)

  1. Smirnov B M Žurnal èksperimentalʹnoj I Teoretičeskoj Fiziki 166 727 (2024)
  2. Krainov V P, Smirnov B M Plasma Phys. Rep. 50 987 (2024)
  3. Kurbatov P F High Temp 61 152 (2023)
  4. Dzlieva E S, D’yachkov L G i dr Fizika Plazmy 49 7 (2023)
  5. Dzlieva E S, Dyachkov L G et al Plasma Phys. Rep. 49 10 (2023)
  6. Pavlov S I, Dzlieva E S et al J. Phys.: Conf. Ser. 1787 012054 (2021)
  7. Novikov L A, Ermolenko M A et al J. Phys.: Conf. Ser. 1787 012055 (2021)
  8. Pavlov S I, Novikov L A et al J. Phys.: Conf. Ser. 1647 012014 (2020)
  9. Urusov R M, Urusova I R High Temp 57 298 (2019)
  10. Pavlov S I, Dzlieva E S et al Contributions To Plasma Physics 59 (4-5) (2019)
  11. Dzlieva E S, D’yachkov L G et al Plasma Sources Sci. Technol. 28 085020 (2019)
  12. Karasev V Yu, Dzlieva E S et al J. Phys.: Conf. Ser. 1383 012022 (2019)
  13. Pavlov S I, Dzlieva E S et al Contributions To Plasma Physics 59 (4-5) (2019)
  14. Dzlieva E S, Novikov L A et al Tech. Phys. Lett. 44 884 (2018)
  15. Karasev V, Dzlieva E et al IEEE Trans. Plasma Sci. 46 727 (2018)
  16. Dzlieva E S, Dyachkov L G et al EPL 123 15001 (2018)
  17. Fundamentals of Ionized Gases 1 (2011) p. 283
  18. Oks E M, Anders A et al Plasma Phys. Rep. 31 978 (2005)
  19. Nedospasov A V, Mudretskaya E V, Zhmendak A V Dokl. Phys. 45 531 (2000)
  20. Biel W, Magd A A-E et al Plasma Phys. Control. Fusion 37 599 (1995)
  21. Kiss’ovski Z, Shivarova A, Tatarova E Plasma Phys. Control. Fusion 36 81 (1994)
  22. Kadomtsev B B Springer Series In Synergetics Vol. Self-Organization Autowaves and Structures Far from EquilibriumCoherent Structures in Plasmas28 Chapter 4 (1984) p. 29
  23. Cartier S L, Merlino R L IEEE Trans. Plasma Sci. 12 14 (1984)
  24. Merlino R L, Cartier S L 44 33 (1984)
  25. Petrov V G Proceedings of the International Symposium on Plasma Wall Interaction (1977) p. 229

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions