Issues

 / 

1975

 / 

March

  

Reviews of topical problems


Thermodynamic models of information processes

This review considers the thermodynamic aspects of the theory of information processes--measurement, transmission of information, and its processing. Considerable attention is given to an explanation of the limiting relations between the accuracy of a physical measurement and the ensuing energy degradation. Hence, in particular, a relation is established between physical entropy and quantity of information. These results are used to determine the energy cost of information transmission with allowance for the energy expenditures on decoding. The process of information processing (computational process) is treated as indirect measurement, and on the basis of this model the energetic complexity of the process is determined (the minimum value of the energy that must be degraded in order to realize the prescribed processing with the necessary accuracy).

PACS: 89.70.
DOI: 10.1070/PU1975v018n03ABEH001955
URL: https://ufn.ru/en/articles/1975/3/d/
Citation: Poplavskii R P "Thermodynamic models of information processes" Sov. Phys. Usp. 18 222–241 (1975)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Поплавский Р П «Термодинамические модели информационных процессов» УФН 115 465–501 (1975); DOI: 10.3367/UFNr.0115.197503d.0465

Cited by (26) ↓ Similar articles (20)

  1. Wu W, Zhu J et al Intell Comput 3 (2024)
  2. Lorenzelli F, Elsayed A et al 2023 IEEE International Test Conference (ITC), (2023) p. 151
  3. Pandey R, Maurya P et al Studies In Computational Intelligence Vol. Quantum Computing: A Shift from Bits to QubitsSimulating Quantum Principles: Qiskit Versus Cirq1085 Chapter 18 (2023) p. 333
  4. Lorenzelli F, Elsayed A et al 2023 IEEE European Test Symposium (ETS), (2023) p. 1
  5. Law and Policy for the Quantum Age 1 (2022) p. 469
  6. Harrington P M, Mueller E J, Murch K W Nat Rev Phys 4 660 (2022)
  7. Lang V Digitale Kompetenz Chapter 2 (2022) p. 55
  8. Díaz T G J, Barrios H C J et al Communications In Computer And Information Science Vol. High Performance ComputingNearly Quantum Computing by Simulation1660 Chapter 15 (2022) p. 205
  9. Poirier B, Jerke J Phys. Chem. Chem. Phys. 24 4437 (2022)
  10. Uhlig R P, Dey P P et al 2019 IEEE Frontiers in Education Conference (FIE), (2019) p. 1
  11. Allahverdyan A E, Wang Q A Phys. Rev. E 87 (3) (2013)
  12. Dei A, Gatteschi D Angewandte Chemie 123 12054 (2011)
  13. Quantum Computing for Computer Architects, Second Edition Synthesis Lectures On Computer Architecture (2011)
  14. Dei A, Gatteschi D Angew Chem Int Ed 50 11852 (2011)
  15. Allahverdyan A E, Janzing D, Mahler G J. Stat. Mech. 2009 P09011 (2009)
  16. Fradkov A L Uspekhi Fizicheskikh Nauk 175 113 (2005)
  17. Touchette H, Lloyd S Physica A: Statistical Mechanics And Its Applications 331 140 (2004)
  18. Kawabata Sh Phys. Rev. A 68 (6) (2003)
  19. Kawabata Sh J. Phys. Soc. Jpn. 72 189 (2003)
  20. Freivalds Rūsinš Numbers, Information and Complexity Chapter 44 (2000) p. 541
  21. Levitin L B Workshop on Physics and Computation, (1992) p. 210
  22. Levitin L B Lecture Notes In Physics Vol. Quantum Aspects of Optical CommunicationsPhysical information theory for 30 years: Basic concepts and results378 Chapter 11 (1991) p. 101
  23. Sobczyk K Lecture Notes In Engineering Vol. Reliability and Optimization of Structural SystemsTheoretic Information Approach to Identification and Signal Processing33 Chapter 26 (1987) p. 373
  24. Levitin L B Information Complexity and Control in Quantum Physics Chapter 2 (1987) p. 15
  25. Anatychuk L I, Luste O Ya Journal Of Engineering Physics 35 1178 (1978)
  26. Pustovoit V I Meas Tech 20 487 (1977)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions