Issues

 / 

1974

 / 

April

  

New instruments and measurement methods


Mirror electron microscopy

The present review is devoted to discussion of the principal stages of development of mirror electron microscopy. In the mirror electron microscope (MEM) the electron beam is reflected in a retarding electric field near the sample surface, and as a result the object being studied is not subjected to bombardment by the probe particles. This permits information to be obtained on the geometrical relief of the surface and the microfields in it. The review discussses the problems of MEM design, the different modes of operation, and questions of the limiting resolution. The theory of contrast formation for the geometrical relief and also for electric and magnetic microfields is discussed in detail. Experimental data are presented on investigation of a broad class of objects--semiconductors, dielectrics, and magnetic structures--in MEM. Various techniques for quantitative measurement of static and dynamic microfields on the surface of solid samples are described.

PACS: 07.78.+s, 68.37.−d (all)
DOI: 10.1070/PU1974v016n04ABEH005299
URL: https://ufn.ru/en/articles/1974/4/f/
Citation: Luk’yanov A E, Spivak G V, Gvozdover R S "Mirror electron microscopy" Sov. Phys. Usp. 16 529–552 (1974)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Лукьянов А Е, Спивак Г В, Гвоздовер Р С «Зеркальная электронная микроскопия» УФН 110 623–668 (1973); DOI: 10.3367/UFNr.0110.197308g.0623

Cited by (34) ↓ Similar articles (4)

  1. Milani M, Curia R et al Bacterial Degradation of Organic and Inorganic Materials Chapter 6 (2023) p. 87
  2. Milani M, Curia R et al Bacterial Degradation of Organic and Inorganic Materials Chapter 2 (2023) p. 21
  3. Abedzadeh N, Krielaart M A R et al Ultramicroscopy 226 113304 (2021)
  4. Tromp R Springer Handbook of Microscopy Springer Handbooks Chapter 11 (2019) p. 565
  5. Principles of Electron Optics (2018) p. 1297
  6. Principles of Electron Optics (2018) p. 627
  7. KENNEDY S M, ZHENG C X, JESSON D E Surf. Rev. Lett. 25 1950013 (2018)
  8. Kennedy S M, Zheng C X, Jesson D E Nanoscale Res Lett 12 (1) (2017)
  9. Bauer E Surface Microscopy with Low Energy Electrons Chapter 1 (2014) p. 1
  10. Bauer E Surface Microscopy with Low Energy Electrons Chapter 4 (2014) p. 189
  11. Yeh P-Ch, Jin W et al Phys. Rev. B 89 (15) (2014)
  12. Bauer E Surface Microscopy with Low Energy Electrons Chapter 7 (2014) p. 409
  13. Qi B, Ólafsson S et al Applied Surface Science 264 349 (2013)
  14. Okamoto H Phys. Rev. A 85 (4) (2012)
  15. Bauer E Handbook of Nanoscopy 1 (2012) p. 673
  16. Kennedy S M, Hjort M et al Nanotechnology 23 125703 (2012)
  17. Bauer E Handbook of Nanoscopy 1 (2012) p. 697
  18. Hawkes P W Ultramicroscopy 119 9 (2012)
  19. Kennedy S M, Zheng C X et al Ultramicroscopy 111 356 (2011)
  20. Kennedy S M, Zheng C X et al Proc. R. Soc. A. 467 3332 (2011)
  21. Kennedy S M, Zheng C X et al Proc. R. Soc. A. 466 2857 (2010)
  22. Okamoto H Phys. Rev. A 81 (4) (2010)
  23. Kennedy S M, Jesson D E et al Phys. Rev. A 74 (4) (2006)
  24. Principles of Electron Optics (1996) p. 1103
  25. Godehardt R Advances In Imaging And Electron Physics Vol. 94 (1995) p. 81
  26. Świȩch W, Rausenberger B et al Surface Science 294 297 (1993)
  27. Rempfer G F, Hayes G O Ultramicroscopy 47 35 (1992)
  28. Hayes G O, Engel W Ultramicroscopy 36 1 (1991)
  29. Unertl W N, Shern C S MRS Proc. 208 (1990)
  30. Principles of Electron Optics (1989) p. 1103
  31. Yakushev E M, Sekunova L M Advances In Electronics And Electron Physics Vol. Advances in Electronics and Electron Physics Volume 68Theory of Electron Mirrors and Cathode Lenses68 (1986) p. 337
  32. Dupuy J C, Sibai A, Vilotitch B Surface Science 147 191 (1984)
  33. Bethge H, Heydenreich J Elektronenmikroskopie in der Festkörperphysik Chapter 8 (1982) p. 186
  34. Venables J A Ultramicroscopy 7 81 (1981)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions