
Abstract. A penetrating analysis of the wave dynamic modes of
a conceptual population system described by the `reaction ±
taxis ± diffusion' and `reaction ± autotaxis ± cross-diffusion'
polynomial models is carried out for the case of increasing
degrees of the reaction and taxis (autotaxis) functions. It is
shown that a `suitable' nonlinear taxis can affect the wave front
sets and generate nonmonotone waves, such as trains and pulses
which represent the exact solutions of the model system. Para-
metric critical points whose neighborhood displays the full
spectrum of possible model wave regimes are identified and a
wave mode systematization in the form of bifurcation diagrams
is given. This enables standard criteria of approach to `danger-
ous boundaries' to be developed. As possible applications,
`pulsing density patches' in forest insect populations as well as
plankton communities and some other examples are discussed.

1. Introduction

A characteristic feature of living systems is their ability to
respond to changes in the environment and, in turn, tomodify
it to a certain extent. One of the simplest responses is
movement of individuals towards the external stimulus (or
away from it) known under the term of taxis. The ability of
individuals to perform nonrandom migrations that lead to
better conditions of habitat and an increase in the reproduc-
tion rate was fixed by natural selection [1, 2]. It is significant

that the intensity of taxis is usually dependent on population
density.

The necessity of taking taxis into account arises in the
modelling of biophysical and ecological processes: develop-
ment of tissues, formation of bacterium colonies, the
dynamics of a plankton community, spreading of epi-
demics, outbreaks of populations of insect phytophages,
and so forth (see, for instance, Refs [3 ± 12]).

Of all the types of taxis (thermotaxis, phototaxis, etc.),
one of the most important is chemotaxis that is directed
movement of individuals towards the gradient of substance
called hereinafter the attractant. (The opposite situation, i.e.
motion of individuals away from a repellent, is also
possible.) We shall consider the case of an attractant
produced by the population individuals themselves. Appar-
ently, chemotaxis is one of the basic mechanisms leading to
the formation of stable, spatially heterogeneous distribu-
tions in the form of population `patterns' or `density
patches' observed, for example, in populations of insects,
aggregations of amoebae, plankton communities, and some
others. It may be supposed that the phenomenon of
chemotaxis underlies the so-called Alle effect [13], under
which individuals of a sparse population assemble into
`density patches' to increase their reproduction rate [14].
Such behavior of individuals reflects the nonmonotone
dependence of the reproduction rate on population density
[15, 16] and the existence of a density magnitude at which
the reproduction rate is maximum.

Typical examples of populations with an attractant are
populations of animals and insects reacting to smell. In this
case, the velocity of spatial spreading of the attractant may be
much higher than the speed of migration of individuals.
Nonetheless, the opposite situation is also interesting: for
instance, the foliage and trunks of trees damaged by insects
serve as attractants for forest insect phytophages; hence, in
this case the attractant is immobile [15]. Another example is
given by some plankton communities, in which the rate of
precipitation that removes the attractant (detritus) from the
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system is essentially higher than the velocity of random
migrations [17, 18].

Chemotaxis with an immobile attractant (or repellent) will
hereinafter be called autotaxis.

Models of the spatial dynamics of populations with taxis
are usually described by the `growth ± diffusion ± convection
(taxis) ± cross-diffusion' equations.

After the fundamental works of Kolmogorov, Petrovski|̄,
Piskunov [19], Turing [20] and Patlak [3] the `reaction ±
diffusion' equations have become major working tools in
various mathematical problems of biology and biophysics
[21 ± 27] (see also reviews [9, 10]).

The `reaction ± cross-diffusion' type models (see, for
instance, Refs [7 ± 10, 17, 18, 28]) that are widely studied in
biophysics are somewhat less known in ecology. Such models
arise in studies of the spread of predator ± prey populations
(Lotka ±Volterra type models), the propagation of bound-
aries of tree populations, and in other problems of mathema-
tical biology [5, 8, 11, 29]; they are distinguished by
substantial nonlinearity of both the reproduction rate and
the intensity function of directed flows.

Notice that `pure' mathematicians are also showing an
increasing interest in such models since the corresponding
equations possess a number of intriguing mathematical
properties (see review [30]), some of which were used in this
paper.

2. Description of models
and the problem statement

This paper considers two classes of models with taxis: scalar
equations (A), and systems of two equations (B).

The first class includes one-dimensional `phenomenolo-
gical' equations that describe the dynamics of a normalized
population density P�x; t�:

Pt � F�P� � �H�P� �DPx

�
x
; D � const ; �A�

where t is the time; x is the coordinate of a one-dimensional
physical space; the function F�P� sets the local kinetics of the
population, while the function H�P� describes the directed
migration flow at the phenomenological level and is called the
taxis intensity, and D is the diffusion coefficient that is
presumed to be constant (without loss of generality, we
assume D � 1).

Models of the second class `explain' the generation of taxis
by including an explicit description of the attractant dynamics
in the framework of classical models of populations with
chemotaxis (see, for instance, Refs [8, 31]):

qP
qt
� F�P� � q

qx

�
D�P;S� qP

qx
ÿ F�P;S� qS

qx

�
; �1�

qS
qt
� T�P;S� � q

qx

�
m�P;S� qS

qx

�
: �2�

In addition to the population density P�x; t�, this model
includes the concentration S�x; t� of the substance produced
(attractant). When deducing the model (1), (2) one assumes
that the flow of individuals is the sum of two components,
viz., the diffusion component proportional to the gradient of
population density P�x; t� and the directed component
proportional to the gradient of attractant concentration
S�x; t�, with the coefficients of diffusion D�P;S� and cross-
diffusion F�P;S�, respectively. The local attractant's kinetics

are described by the functionT�P;S�, and m is the attractant's
diffusion coefficient.

In the case of autotaxis it is natural to neglect the diffusive
member in equation (2) assuming m � 0. Supposing also that
the diffusion coefficient D is constant (and equal to 1), we
obtain a systemwhich presents amodel of a population with an
attractant:

qP
qt
� F�P� � q

qx

�
qP
qx
ÿ F�P;S� qS

qx

�
; �B�

qS
qt
� T�P;S� ;

and which is the second subject of analysis in the present
paper.

The observed spatial distributions of density and the
corresponding solutions of models are not obligatorily
stationary. Automodel solutions, in particular those of
`travelling wave' type, are highly interesting. Such solutions
correspond to spatially heterogeneous distributions of var-
ious types that propagate with a definite velocity (see, for
instance, Refs [5, 32 ± 37]).

A standard method for studying `travelling waves' is by
passage to an automodel system of ordinary differential
equations. It turns out that in this case the `taxis' and `cross-
diffusion' members do not increase the dimension of the
automodel system (in contrast to the `diffusion' ones).

This paper sets the following tasks:
Ð to describe all possible wave solutions of models (A)

and (B), among other things to indicate those arising due to
the occurrence of nonlinear taxis (autotaxis);

Ð to investigate changes in the characteristics of the
travelling wave (shape, velocity) depending on the variation
of model parameters.

The above-stated problems have been fully solved for
several polynomial models of populations. Such the restric-
tion is determined by the following causes.

As a rule, the exact form of functions, for example, the
population growth rate F�P� and the intensity of flow (taxis)
H in equation (A) as well as the growth rate of attractant
T�P;S� and the cross-diffusion coefficient F�P;S� in model
(B), are unknown. A natural approach under the conditions
of incomplete knowledge of functions is their presentation in
the form of polynomials of the smallest required degree, which
correspond to a Taylor expansion in the vicinity of equili-
brium values of density, i.e. of the roots of the F�P� function.

This paper successively considers the cases where the
model of local dynamics has one, two or three equilibrium
states. According to the above-stated approach, this means
that in the vicinity of the studied density values the growth
function F�P� is approximated by a polynomial of the first,
second or third degree. Thus we come to three known models
of local population dynamics Ð the generalized models of
Malthus, Verhulst, and Alle, respectively. For a given growth
function F, the consequent analysis of density waves arising in
model (A), depending on the increase in the degree of a
polynomial H, is carried out.

In the case of model (B), the following assumptions were
made for the functions F�P;S� and T�P;S�:

(1) the multiplicativity of the functions F and T:
F�P;S� � F1�P�F2�S�, T�P;S� � T1�P�T2�S�;

(2) the polynomiality of the function R�P� � F1�P�T1�P�
called autotaxis intensity;

(3) F2�S�T2�S� � const�� 1�.

918 F S Berezovskaya, G P Karev Physics ±Uspekhi 42 (9)



Note. The latter assumption, which is determined essen-
tially by technical aspects of the methods used for investigat-
ing themodel, nonetheless has a clear `asymptotic' meaning: it
describes the decrease in the influence of attractant S, for its
excessive growth, on the dynamics of a producer P.
Dependences of this type were used, for example, in studies
into the dynamics of bacterium colonies [18, 38].

Like in the case of model (A), in studies of model (B) the
sequential analysis of density waves, generated depending on
the increase in the degree of polynomialR�P�, was performed
for each of the above-listed functions F of population growth.

3. Models and automodel systems

3.1 Model (A)
Solutions of equation (A), which are travelling waves
propagating with the constant velocity C along the spatial
coordinate x, are expressed as

P�x; t� � P�x� Ct� � p�x� ; �C1�

where x � x� Ct. The propagation of a wave from right to
left along x corresponds to positive velocities C. Solutions
(C1) satisfy the wave (automodel) system

px � n ;
nx � ÿF�p� � nG�p� ;

�
�3�

in which the functionG�p� is expressed via the functionH�P�
and the wave propagation velocity C:

G�p� � CÿHp�p� �4�

and is a polynomial for the polynomial function of taxis
intensity H�P�.

The form of the functionG�p� can be definedmore exactly
if Hp�p� is represented as a polynomial: Hp�p� � h0 � h�p�,
where h0 � const is the density-independent component of
the taxis intensity, while h�p� represents the remaining
members of the expansion. Then G�p� � Ch ÿ h�p�, where
Ch � Cÿ h0 is the relative velocity of the travelling wave.
Thus, the polynomialG�p� is parametrically dependent on the
relative velocity Ch of the wave.

3.2 Model (B)
The `travelling wave' type solutions of model (B)

P�x; t� � P�x� Ct� � p�x� ; S�x; t� � S�x� Ct� � s�x�
�C2�

satisfy the wave automodel system which, by virtue of
conditions (1) ± (3) in Section 2, acquires the form

sx � T1�p�T2�s�
C

;

px � n ;

nx � ÿF�p� � nG�p� ;

8>><>>: �5�

where

G�p� � C� Rp�p�
C

; R�p� � F1�P�T1�P� : �6�

Notice that in the system of equations (5), an independent
subsystem is composed by the last two equations, which is of
the form of system (3) (and depends on the velocity C as on a
parameter). The function G�p� in this system is expressed
through the autotaxis intensity R�p� by formula (6) and is
polynomial by virtue of assumption (2) made in Section 2.

Thus, the models of populations with `phenomenological'
taxis and autotaxis possess the following remarkable com-
mon property: investigation of the `travelling wave' type
solutions of the population density P for both model (A)
and model (B) is reduced to the analysis of an automodel
system of ordinary differential equations (3) of the same type.
The difference consists solely in the interpretation of the
results obtained.

Let us consider an interesting example where the local
growth function F � 0. It turns out that even here the
introduction of a density-dependent taxis (autotaxis) into
the model leads to nontrivial results. By single squaring, the
automodel system (3) is reduced to the equation

px � CpÿH�p� � c1 � Q1�p� � c1 �7�

for the model (A) or to the equation

px � Cp� R�p�
C
� c1 � Q2�p� � c1 �8�

for the model (B). In both equations the constant c1 may be
calculated from the `initial' conditions (with respect to x) and
further assumed to be zero for simplicity.

If the right hand parts of equations (7) and (8), i.e.
functions Q1 and Q2, are constants or linear polynomials,
then these equations have no bounded heterogeneous solu-
tions in the straight line ÿ1 < x <1. But if Q1, Q2 are
polynomials of the second or higher degrees, then bounded
spatially heterogeneous solutions can exist. In this case, a one-
parametric family of bounded monotonic wave fronts, whose
maximum amplitude is equal to the distance between roots,
corresponds to each pair of neighboring roots of these
functions.

Coming back to the initial variables, we can affirm that
even in the simplest case of zero local growth, the density-
dependent taxis (autotaxis) may be the cause of the existence
of heterogeneous bounded wave modes (see Example 1 in
Section 6).

3.3 Wave solutions and phase curves
Between the bounded `travelling wave' solutions p�x� of the
spatial model (A) [or (B)] and the phase curves of the
automodel system (3) there exists a known (see, for instance,
Refs [25, 32, 39]) correspondence (Figs 1 ± 3), which we shall
formulate for the most important cases.

Proposition 1. Bounded wave front, heteroclinic curve,
wave pulse, homoclinic curve, wave train, limit cycle.

By virtue of this statement, the description of all possible
wave solutions of equation (A) and system (B), as well as of
their modifications with variation of parameters of the
functions F�P� andH�P� [or R�P�], is reduced to the analysis
of phase curves and bifurcations in the automodel system
depending on an `additional' parameter that is the propaga-
tion velocity C of waves.

Assuming the functions F and G to be polynomials, let us
consider the behavior of system (3) depending on variation of
the parameters.
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Notice that the form (3) is used for the presentation of
polynomial canonical systems of numerous known local
bifurcations (see, for instance, Refs [40 ± 46]). Such canonical
systems can be written in `abstract' variables �y1; y2� and with
`abstract' parameters d � �d1; . . . ; dn�:

y 01 � y2 ; �CS�
y 02 � V�y1; d� � y2W�y1; d� :

Bifurcation takes place at a zero singular point of the
system (CS) for zero values of parameters d , the number of
parameters n coinciding with the codimension of bifurcation.
The bifurcation diagram of the system (CS) sets the partition
of a vicinity of the point �d1; . . . ; dn� � �0; . . . ; 0� into
domains with topologically different phase portraits.

The application of these diagrams in combination with
Proposition 1 to the analysis of wave systems (3) enables one
to follow the appearance, modifications and disappearance of
the wave solutions in models (A) and (B) with variation of the
parameters and also upon an increase in the nonlinearity of
taxis intensity.

In Section 4 below, we will discuss, for definiteness, the
wave solutions of equation (A) [47, 48].

4. Wave modes
of some polynomial equations (A)

For each given growth function F�P� being a polynomial of
the degree not exceeding 3, let us look for the taxis polynomial
function G�P� of the smallest degree, at which qualitatively
new (compared to the taxis-free model) wave regimes are
established in the model.

4.1 Linear growth functions (Malthusian type models)
Let us consider the growth function

F�P� � a�Pÿ g� ; a > 0 ; g > 0 :

If the taxis in equation (A) is described by the cubic
polynomial H�P�, then G�p� in system (3) is a quadratic
polynomial that can be represented as

G�p� � Ch � bp� fp2 ; f 6� 0 :

With the shift �pÿ g� ! p and rename of variables
�p; n� ! �y1; y2�, the wave system (3) with the given functions
F and G is reduced to the system (CS) with the functions

V�y1; d1� � ÿay1 ; W�y1; d1� � d1 � Ay1 � fy21 ; �9�

where A � b� 2fg and d1 � Ch � bg� fg2 � G�g�.
The system (CS), (9) depending on the single parameter d1

is a simple modification of the Van der Pol model (see, for
instance, Refs [40, 49]). Its singular point �y1; y2� � �0; 0� is
stable for d1 < 0 and unstable for d1 > 0. At d1 � 0, the first
Lyapunov's value l1 � af is nonzero. Thus, an Andronov ±
Hopf bifurcation of codimension 1 occurs in the system. In
this case, one limit cycle appears (Fig. 4) or disappears. Now
note that the system (CS), (9) has no rough limit cycles for the
polynomial G of less than second degree.

According to Proposition 1, the train of the variable P in
the initial model (A) corresponds to the limit cycle in the wave
system (3) for given functions F and G (see Fig. 3).

The sequential analysis of solutions of the polynomial
model (A) with the Malthusian birth rate F implies the
following conclusions relative to the population wave
dynamics described by this model.

b

u2 u

v
u2

P

u1

x

a

u2

P

u1

x u2u1 u

v

c

u1

u3 u2

u

v

x

P

u2

u3

u1

Figure 2. Same situation as in Fig. 1. The wave pulses correspond to the

homoclinic phase curves; (a, b) two small and (c) one large separatrix

loops, respectively.

P

x

u1 v

u

u1

Figure 3. Same situation as in Figs 1 and 2. The wave trains correspond to

the limit cycles.

y1

0 d1

y2

Figure 4. Bifurcation diagram of the system y 01 � y2, y 02 �
ÿay1 � y2�d1 � Ay1 � fy21�, a > 0, f < 0. At d1 � 0, stability of the

singular point �y1; y2� � �0; 0� is changed with the limit cycle appearance.

x

P

u2

u1

d

x

u2
P

u1

a

uu2

v

u1

c

uu2

v

u1

b

uu2

v

u1

f

u

v

u1 u2

e

Figure 1.Correspondence between the bounded `travelling wave' solutions

of system (A) and the phase curves of its automodel system. The wave

fronts (a, d) correspond to the heteroclinic phase curves: a separatrix from

saddle to node, the upper (b) and lower (e) connections, respectively; a

separatrix from saddle to saddle, the upper (c) and lower (f) connections,

respectively.

920 F S Berezovskaya, G P Karev Physics ±Uspekhi 42 (9)



The existence in a population of a density-dependent taxis
whose intensity H is a polynomial of not less than third degree
can lead to the generation of periodic bounded oscillations of
population density, which spread in space with a constant
velocity.

4.2 Quadratic growth functions (logistic type models)
Now let us consider the growth function

F�P� � a� bPÿ hP 2 ; h 6� 0 :

The logistic function F�P� � hP�1ÿ P�, h > 0 is here a
special case.

For H � 0, model (A) with a logistic growth function
coincides with the known Fisher model [11, 19, 50] (see also
Ref. [8]); in this model only monotonic wave fronts can exist.

In the general case, the function F can have up to two
different nonnegative roots:

F�P� � ÿh�Pÿ u1��Pÿ u2� ; h > 0 ;

where 04 u1 4 u2. Herewith, up to two equilibria, unstable
u1 and stable u2, exist in the local system, whereas the wave
system (3) has two singular points Ð a topologic node �u1; 0�
and a saddle �u2; 0�, respectively.

Let the taxis intensity H be a quadratic polynomial in the
model (A), then in the system (3) G is the linear polynomial
G�p� � Ch � bp �b 6� 0�.

Let us denote u � � b=�2h�. Upon the shift �pÿ u �� ! p
and rename of variables �p; n� ! �y1; y2�, the wave system (3)
with given functions F and G is reduced to the system (CS)
with the functions

V�y1; d1; d2� � d1 � hy21 ; W�y1; d1; d2� � d2 � by1 ; �10�
where

d1�ÿaÿ bu � � hu �2 � ÿF�u �� ;
d2� Ch � bu � � G�u �� :
The system (CS), (10) is a model system for the codimen-

sion-2 bifurcation `double neutral equilibrium' [41] (see also
Refs [40, 45]), which occurs at the zero singular point
�y1; y2� � �0; 0� for zero values of parameters d1, d2 and
arbitrary fixed values of coefficients h, b (Fig. 5). In the
system (3) with given functions F and G, the same bifurcation

occurs at the double singular point �u �; 0�, while the
bifurcation parameters are d1 � ÿF�u ��, d2 � G�u ��.

The plane of parameters �d1; d2� is divided into four
domains of topologically different phase portraits. The
boundaries of these domains are:

Ð the curve of multiplicity SN �d1 � 0�, which corre-
sponds to the existence of double equilibrium; the intersection
of this line gives rise to the appearance of two equilibria: a
saddle and a node. The latter transforms into a focus with
variation of parameters d1, d2. The dashed line D in the
parametric portrait corresponds to this nontopological
modification;

Ð the curve of neutrality N, in which the Andronov ±
Hopf bifurcation occurs in the system, i.e. the appearance of a
limit cycle from a focus;

Ð the line L which is matched by the homoclinic curve
(separatrix loop) of the saddle. It is this curve in which the
limit cycle appearing from a neutral focus in the line N
disappears.

Remark. Naturally, the above events may be interpreted
in the `opposite direction': the limit cycle appears from the
separatrix loop and disappears by `sitting down' on a focus
with a variation of parameters.

It follows from Proposition 1 that each point of the
parametric domains II and IV corresponds to an appropriate
wave front (see Fig. 1), which is monotonic in the domains
enclosed by the lines SN and D; the points of domain III
correspond to a wave train, i.e. spatial density oscillations in
the vicinity of P � g (see Fig. 3); the wave pulse corresponds
to the boundary L (Fig. 2a).

In order to interpret the solutions obtained in terms of
population density one should consider only the nonnegative
values of variable p.

Based on the analysis of solutions of the polynomial
model (A), the following conclusions may be made relative
to the populationwave dynamics described by this model with
the logistic function F of birth rate.

Density-dependent taxis can be a reason for inducing
periodic density oscillations and a pulse wave, spreading in
space with a constant velocity, if the taxis intensity H is a
quadratic (or higher in order) polynomial function of density.
Under linear taxis, only spatial wave fronts exist in the
population, and they are analogous to Fisher's population
waves.

4.3 Cubic growth functions (Alle type models)
Now let the growth function be a cubic polynomial of the
general form

F�P� � a� b1P� b2P
2 ÿ hP 3 ; h 6� 0 :

A special case is the function

F�P� � hP�Pÿ l��1ÿ P� ; 0 < l < 1; h > 0 ;

which is widely used in many problems, such as the
investigation of the dynamics of Alle type populations,
propagation of a flame front, etc. (see, for instance, Refs [11,
51, 52].

Now let us consider two variants with opposite signs of h
in the function F and investigate the cases where, depending
on the values of parameters, the polynomial F has from one
�u1� to three positive roots �u1 4 u3 4 u2�. This means that
from one to three equilibrium states can exist in the local

y2

y1

I III

d2I

IV

III

II

N
L

D SN

d1

II IV

Figure 5. Bifurcation diagram of the system y 01 � y2, y 02 �
d1 � hy21 � y2�d2 � by1�, h < 0, b > 0. Crossing of the SN boundary

curve, two singular points appear (disappear) in the plane �y1; y2�: a
saddle and a node (stable at d2 < 0, and unstable at d2 > 0); the curveD is

the site of (nontopologic) modification of the node into the focus; the

boundary curve N corresponds to the Andronov ±Hopf bifurcation, and

the boundary curve L corresponds to the existence of a separatrix loop of

the saddle point.
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system. For the positive coefficient h, these are, respectively,
one stable equilibrium or two stable equilibriawith one unstable
equilibrium between them. For the negative coefficient h, an
opposite situation persists: one unstable equilibrium or two
unstable equilibria with one stable equilibrium between them.

Let the taxis function H in the model (A) be such that in
the system (3) G is a quadratic polynomial which, like in
Section 4.1, can be expressed as

G�p� � Ch � bp� fp2 ; bf 6� 0 :

Let us denote u �� � b2=�3h�. With the shift �pÿ u ��� ! p
and rename of variables �p; n� ! �y1; y2�, the wave system (3)
with given functions F and G is reduced to the system (CS)
with the functions

V�y1; d1; d2; d3� � d1 � d2y1 � hy31 ;

W�y1; d1; d2; d3� � d3 � Ay1 � fy21 ; �11�
where

d1 � ÿaÿ b1u
�� ÿ b2�u ���2 � h�u ���3 � ÿF�u �� ;

d2 � ÿb1 ÿ 2b2u
�� � 3h�u ���2 � ÿFp�u ��� ;

d3 � Ch � bu �� � f�u ���2 � G�u ��� ;
A � b� 2fu �� :

The system (CS), (11) is a canonical model system for
three codimension-3 bifurcations `triple neutral equilibrium'
(a `saddle' at h > 0, a `focus' at h < ÿq � A2=8 and an `elliptic
sector' at ÿq < h < 0; f is assumed to be small) which occur
at the zero singular point �y1; y2� � �0; 0� at d1 � d2 � d3 � 0
[44].

In the wave system (3), the same bifurcations take place at
the triple point �u ��; 0� for given functions F and G, while the
bifurcation parameters are d1 � ÿF�u ��, d2 � ÿFp�u ��� and
d3 � G�u ���.

Consider the cases identified as the `saddle' and the
`focus', the bifurcation diagrams of which are shown in Figs
6 and 7, respectively [43, 44].

(1) At h > 0, the `saddle' case is realized. The neighbor-
hood of the bifurcation values of parameters is split into 12
domains of topologically different phase portraits. Depend-
ing on the values of parameters d1 and d2, the plane �y1; y2�
contains from one [one saddle with coordinates �u1; 0�] to
three [two saddles and one nonsaddle with coordinates �u1; 0�,
�u3; 0�, �u2; 0�] singular points 1, with u1 4 u3 4 u2.

Figure 6 shows a cut of the parametric portrait of the
system onto the plane �d3; d1� for a typical value of parameter
d2. The parametric space is split into twelve domains with
topologically different phase portraits; the boundary sur-
faces 2 correspond to the following bifurcations:

SN1 and SN2: appearance (confluence) of a pair of phase
points that are a saddle and a node;

N: change of the stability of the nonsaddle singular point;
DC: appearance (confluence) of a pair of limit cycles;
L1 and L2: homoclinic curve of each saddle point;
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I V
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II IV

VII VIII X

XI

IX

d3

d1

V
IX

N

DC

L1

L2

SC1

SC2

SN1

SN2

III

X

IV

VI
VIII

VII

XI
XII

II

I

I

XII

Figure 6. Cut onto the plane �d3; d1� of the bifurcation diagram of the system y 01 � y2, y
0
2 � d1 � d2y1 � hy31 � y2 �d3 � Ay1 ÿ fy21�, h > 0, f > 0 at a fixed

value of parameter d2 < 0. Crossing of the SN1, SN2 boundary curves, two singular points appear (disappear), which are a saddle and a node in the plane

�y1; y2�; the appearance (disappearance) of a limit cycle around a focus corresponds to crossing the curve N; the existence of a saddle separatrix loop

embracing the left (right) nonsaddle corresponds to the boundary line L1 �L2�; at the boundary SC1 �SC2� the upper (lower) separatrix connection of

saddles takes place; crossing of the DC curve, two limit cycles appear (disappear) in the plane �y1; y2�.

1 The term `nonsaddle' defines a node, a focus and a center, in the role of

which a singular point may be foundwith a positive Jacobian determinant,

depending on the parameters of the system; in particular, on variation of

the parameters a node may transform into a focus (this nontopological

bifurcation is not shown in the parametric portrait).
2 In a planar section of the parametric portrait presented in Fig. 6, the

surfaces are shown as curves, while the lines of their intersection are

indicated as points.
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SC1 and SC2: heteroclinic connection of two saddle
points.

By applying Proposition 1, we obtain a description of the
wave solutions of themodel in each parametric domain and at
the interdomain boundaries.

Let us look at the domains VIII ±XII: the respective phase
portraits contain the limit cycles that correspond to the
travelling trains in the initial model. Of all the boundaries,
we are particularly interested in SC1, SC2 that correspond to
monotonic wave fronts (Fig. 1a, c and Fig. 1d, f) with the
maximal possible amplitude (see, for instance, Refs [25, 52]) in
equation (A); a detailed phase-parametric investigation of
these solutions is presented in Section 4.4.

The sequential analysis of the solutions of the polynomial
model (A) affords the following conclusions relative to the
wave dynamics of a population with cubic birth rate F.

Such a population considered locally can exist, depending
on the system parameters, either in one (stable) equilibrium
state u1 or in two stable equilibrium states u1 and u2 (and one
unstable state u3). In the former case of local monostability
(domain I in the parametric portrait shown in Fig. 6) no
bounded spatial density waves are generated under any taxis. In
the latter case of local bistability:

Ð at linear taxis intensity H, there are only wave fronts (in
domains II ±VII of the parametric portrait) with amplitudes
a3 � u3 ÿ u1, a2 � u2 ÿ u3. The boundaries SC1 and SC2

correspond to wave fronts with amplitudes a1 � u2 ÿ u1 (see
Fig. 1);

Ð at quadratic H, wave trains appear (in parametric
domains VIII, IX) that are spatial periodic oscillations
around the density u3 with an amplitude lower than a1 (see
Fig. 3), as well as pulse waves (Fig. 2a, b) at the parametric
boundaries L1, L2;

Ð at cubic (and higher) H, two different wave trains can
appear (domain XII in Fig. 6) 3 with different amplitudes but
the same propagation velocity.

(2) Now let the cubic function of the local growth F have
the leading coefficient h < 0, while the taxis intensity H is
such that the inequality h < ÿA2=8 is satisfied in the
canonical system (CS), (11). Depending on the parameters
d1, d3, in the plane �y1; y2� there are from one [nonsaddle with
a coordinate �u1; 0�] up to three [two nonsaddles and one
saddle with coordinates �u1; 0�, �u3; 0�, �u2; 0�] singular points
(see Note 1). Modifications of these singular points on
variation of parameters determine the parametric portrait of
the system. In the wave system a `focus' bifurcation is
realized, at which the zero point vicinity in the space of
parameters �d1; d2; d3� is split into ten domains with topolo-
gically different phase portraits. A cut of the parametric
portrait of the system onto the plane �d3; d1� for a `typical'
positive value of parameter d2 is presented in Fig. 7.

The boundary surfaces (see Note 2) correspond to the
following bifurcations:

SN1 and SN2: appearance (confluence) of a pair of phase
points (a saddle and a node);

N1 and N2: change of the stability of each focus;
DC: appearance (confluence) of a pair of limit cycles;
L1, L2 and L: formation of different separatrix loops of a

saddle point.
The main feature of this bifurcation diagram, compared

to the preceding ones, is the existence of a `large' saddle
separatrix loop (a homoclinic curve) corresponding to the
boundary L and a `large' limit cycle enveloping all three

I II

y1

y2

V
IX

DC

L1

L2

L

SN1

N1

N2

SN2

III

X

IV

VI VIII

VII

II

II

I

I

d3

d1

III IV V

VI VII VIII IX X

Figure 7. Cut onto the plane �d3; d1� of the bifurcation diagram of the system y 01 � y2, y
0
2 � d1 � d2y1 � hy31 � y2 �d3 � Ay1 ÿ fy21�, 8h < ÿA2, f > 0 at a

fixed value of parameter d2 > 0. Crossing of the SN1, SN2 boundary curves, two singular points appear (disappear) in the plane �y1; y2�; the appearance
(disappearance) of two limit cycles corresponds to crossing the curve DC; the Andronov ±Hopf bifurcation occurring with the right (left) focus

corresponds to crossing the lineN1 (N2); the separatrix loop of the saddle singular point which envelopes, respectively, the right focus, the left focus and

both focuses corresponds to the lines L1, L2, and L.

3 The words `can appear' here mean `can appear at the values of

parameters from the corresponding domains of the parametric portrait'.
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equilibria (in domains VI ± IX of the parametric portrait,
while in domain IX there are even two such cycles, stable and
unstable). The authors of Refs [44, 53] have demonstrated
that the above-mentioned homoclinic curve arises solely for
the quadratic (or higher) function W in the canonical system
(CS), (11).

By applying Proposition 1, we arrive at a description of
the wave solutions of model (A) in each parametric domain
and at the interdomain boundaries. Apparently, the majority
of such wave solutions will be various trains (see Fig. 3) with
very broad spectrum.

The analysis of the solutions of the polynomial model (A)
affords the following conclusions relative to the wave
dynamics of a population with a given cubic birth rate
function F.

A local population with this birth rate function has either
one (unstable) equilibrium with density u1 or u2, or three
equilibria with densities u1 4 u3 4 u2, of which only u3 is
stable; the domain of its attraction is bounded by the extreme
equilibrium densities u1 and u2.

By `generating' density trains, the taxis in such a population
can appreciably stabilize its dynamic regimes. Such trains are
realized in this model even when there is only one equilibrium
(domains II and X, the latter including two trains with
different amplitudes but with the same propagation velocity
along the spatial variable x). In the case of three equilibria, the
population can exhibit periodic density oscillations spreading
with a constant velocity. These oscillations with amplitude
a3 < u2 ÿ u3 occur near the equilibrium u2 (for the values of
parameters from domain IV) and near the equilibrium u1 with
amplitude a1 < u3 ÿ u1 (domain VII). Finally, large-ampli-
tude �a2 > u2 ÿ u1� trains exist in domains VI ± IX.

The wave pulses correspond to the boundaries L1, L2 and
L (Fig. 2a ± c). Notice that a large wave pulse (with a swing
larger than u2 ÿ u1) can be generated only at a cubic (and
higher) taxis intensity H [the quadratic (and higher) function
G in the wave system (3)]. For the realization of low-amplitude
pulses and trains it is sufficient to have the quadratic taxis
intensity H.

Remark. The `triple neutral equilibrium± elliptic sector'
bifurcation, which is realized in the canonical system (CS),
(11) at ÿq < h < 0, does not lead, in contrast to the case
h < ÿq, to the appearance of new bounded wave solutions in
model (A); furthermore, an interesting and important case of
wave pulse corresponding to the `large separatrix loop'
disappears.

4.4 On monotonic wave solutions of equation (A)
Monotonic wave fronts play a special role among the
solutions of model (A) due at least to the fact that they also
exist in the `reaction ± diffusion' equations without taxis (in
contrast to the `rough' nonmonotone waves). In the auto-
model system (3), the wave fronts correspond to heteroclinic
curves, i.e. the separatrixes of saddle equilibria (see Fig. 1).

Consider here two types of heteroclinic curves: the
separatrix from a saddle to a node (Fig. 1b, e), and the
saddle-to-saddle separatrix (Fig. 1c, f).

The curve of the former type (saddle-to-node separatrix)
is not `bifurcational': if such a connection is realized for some
fixed values of the model parameters, there exists, generally, a
similar connection for close parametric values. Solutions of
this type are already realized in model (A) for the quadratic
(logistic) function F considered in Section 4.2 [8, 19, 32,
39, 50].

The curve `separatrix connection of two saddles' of the
latter type accords to the nonlocal (heteroclinic) bifurcation
in the wave system (3); the interdomain boundary corre-
sponds to it in the parametric portrait of the system. For
realization of this bifurcation the local birth rate function F
should be at least cubic. The respective model was considered
in Section 4.3, case 1 �h > 0�. Notice that at H � 0 such a
heteroclinic curve was found in the well-known work [52] (see
also Refs [25, 32, 39]).

We shall consider below both variants of heteroclinic
curves and state the problem of their description for system
(3) with quadratic and cubic functions F.

The solution of this problem affords an estimate of the
effect of taxis on the shape of the corresponding wave front
and the velocity of its spreading in models (A) and (B).

Let us present system (3) in the form of the equation

dn
dp
� ÿF�p�

n
� G�p� ; �12�

where the function G is linear:

G�p� � Ch � bp ; b 6� 0 : �13�

Let u1, u2 be the roots of the polynomial F, one of which
(e.g., u1) corresponds to the saddle point �u1; 0�. The point
�u2; 0� is a node when F is quadratic, and a saddle when F is a
cubic polynomial [the latter case involves the obligatory
existence of the point �u3; 0� which is a node lying between
two saddles: u1 4 u3 4 u2].

Now look for the curve connecting the points �u1; 0� and
�u2; 0� in the form of a parabola n � n�p�:

n � k�pÿ u1��pÿ u2� : �14�

(a) Let F be the quadratic polynomial F�p� � a� bpÿ hp2

presented as

F�P� � ÿh�pÿ u1��pÿ u2� : �15�

By differentiating (14) and substituting the result into
equation (12) with consideration of Eqns (13), (15), we obtain
the relation

k
�
2pÿ �u1 � u2�

� � h

k
� Ch � bp : �16�

By equating the coefficients at the same degrees of p and
considering that u1 � u2 � b=h, we arrive at

k � b

2
; Ch � ÿ h

k
ÿ k�u1 � u2� � ÿ 2h

b
ÿ bb

2h
: �17�

Relations (14), (17) set the equation of the heteroclinic
curve of the system (3), (13), (15); in accordance with (C1) they
give the exact wave solution of the system (A), (13), (15)
together with the relative propagation velocity Ch of the
corresponding wave front along the spatial variable x. As
noted above, this wave is `one of the many' that exist on
variation of the parameter b. Thus, formulas (17) afford an
estimate of the characteristics of the whole family of wave
fronts that contains wave (14) as well.

Now note that a special case of the solution of Eqns (14),
(17) was found by Murray [8] for the pure logistic local birth
rate: F�p� � p�1ÿ p� and the function G�p� � bp.
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(b) Let F be the cubic polynomial

F�p� � a� b1p� b2p
2 ÿ hp3 ; h > 0 ;

having the roots u1 4 u3 4 u2 and presented in the form

F�p� � ÿh�pÿ u1��pÿ u2��pÿ u3� : �18�

We will look for the separatrix connecting the saddles
�u1; 0�, �u2; 0� in the form of curve (14). By analogy with the
above-stated, we obtain the system for finding k and Ch:

2k2 ÿ bkÿ h � 0 ; k2�u1 � u2� � kCh ÿ hu3 � 0 : �19�

Since the roots u1, u2, u3 of the polynomial F�p� are linked
by the relation

u1 � u2 � u3 � b2
h
;

we obtain the system

k� � b� ���������������
b2 � 8h
p

4
; �20�

Ch � hu3
k�
ÿ k�

�
b2
h
ÿ u3

�
; �21�

a� b1u3 � b2u
2
3 ÿ hu33 � 0 ; �22�

8>>>>><>>>>>:
where the coefficient k� corresponds to the case n < 0, i.e. to
the lower connection of saddles in the phase portrait (Fig. 1f),
whereas kÿ corresponds to the case of n > 0 (the upper
connection, Fig. 1c).

The system (14), (20) ± (22) fully defines the sought
heteroclinic curve of the system (3), (13), (18), whereas with
consideration of (C1) it gives the exact solution of equation
(A), (13), (18) together with the relative propagation velocity
Ch of the corresponding wave front along the spatial variable
x.

Let us recall that G�p� � CÿHp�p�. Thus, for the case
G�p� � C formulas (20) ± (22) coincide with those derived in
Ref. [52]. In addition, the system (20) ± (22) allows estimation
of the effect of taxis on the propagation velocity of the
monotonic wave corresponding to the heteroclinic curve
(14). In formulas (20), (21) the function H is `represented' by
the coefficient b. From the system (14), (20) ± (22) we obtain

n � K�pÿ u1��pÿ u2� ; �23�
Ch � C0 � k1b� o�b� ;

K � k�0 �
b

4
� o�b2� :

Here k�0 � �
��������
h=2

p
is the coefficient of the parabola which is

the heteroclinic curve of the system (3) for b � 0;
C0 � ��3u3hÿ b2�=

�����
2h
p

is the propagation velocity of the
corresponding wave in the spatial model (A), and k1 �
ÿ�u3 � b2=h�=4.

Note now that for the quadratic G�p� � Ch � bp� fp2

(coefficient f 6� 0) the heteroclinic curve (connecting saddles)
is not a parabola of form (14). In this case, one succeeds in
estimating the shape of the wave and the velocity of its
propagation at low f values.

Remark. The proposed approach has enabled us to solve
an important problem of bifurcation theory: to find the
parametric surface corresponding to the nonlocal hetero-
clinic bifurcation, i.e. to the heteroclinic connection of two

saddles, in the canonical three-parameter system (CS), in
which the functions V andW have the form (11):

V�y1; d1; d2; d3� � d1 � d2y1 � hy31 ;

W�y1; d1; d2; d3� � d3 � Ay1 � fy21 ; h > 0 :

For f 6� 0, at d1 � d2 � d3 � 0, a `triple neutral equili-
brium' (a saddle case) bifurcation is realized in this system; the
corresponding bifurcation diagram is shown in Fig. 6.

At the values of parameters �d1; d2�, for which the
function V has three roots, the system (CS) possesses the
following equilibria: two saddles and one nonsaddle. For all
values of coefficientsA and f, the parametric space �d1; d2; d3�
allows existence of the bifurcation surfaces SC1 and SC2,
which correspond to separatrixes going from saddle to saddle
(the upper and lower connections, respectively) in the phase
plane [44, 53]. Using formulas (14), (20) ± (22) we obtain the
exact analytical description of these surfaces for the case
f � 0.

The roots of the function V are linked by the relation
u1 � u2 � u3 � b2 � 0, and the system (20) ± (22) acquires the
form

d1 � d2u3 � hu33 � 0 ;

d3 � hu3
k�
� k�u3 ;

k� � A� �����������������
A2 � 8h
p

4
:

8>>>><>>>>: �24�

For fixed coefficients A and h, the three constituent
equations of system (24) determine the interdependence of
five `variables' d1, d2, d3, u3, k�. Hence, the system (24) sets the
surface (more precisely, two surfaces Ð one for k� and other
for kÿ) in this five-dimensional space. Projections of these
surfaces into the space of parameters �d1; d2; d3� are namely
the sought boundaries SC1 and SC2, which are represented by
the curves shown in Fig. 6.

4.5 Nonpolynomial models
In the general case, when the growth and taxis functions are
not polynomial but are sufficiently smooth in the vicinity of
the density values under consideration, the same bifurcations
as those in the polynomial systems can be realized at definite
values of parameters in the automodel system. Then the
corresponding structure of the phase ± parametric portrait is
observed in a certain neighborhood of these values of
parameters. (In this case the systems are said to have the
same `organizing center'.) Of course, outside this neighbor-
hood other bifurcations can also occur in this system [54].

In order to find the `organizing center' of a non-
polynomial model, in the vicinity of which a variety of wave
regimes are realized, it is necessary to expand the functions F
and H into a Taylor series at the critical point of the local
model. The critical point is understood as the value of the
variable P � P �, which is transformed into the bifurcation
point of the automodel system.

For a model of Malthusian type, this point is the only
equilibrium, which is the root of the local kinetics function F.

For a model of logistic type (with the quadratic local
kinetics function F), the critical point is P � at which
FP�P �� � 0. (For F�P �� � 0, P � becomes the point of double
equilibrium of the model.)

For a model of Alle's type (with the cubic local kinetics
function F), the critical point is P � at which FPP�P �� � 0.
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(For F�P �� � 0 and FP�P �� � 0, P � becomes the point of
triple equilibrium.)

The parameter (or one of the parameters), on which the
structure and behavior of waves depends, is in all cases the
value of function G�P� at the critical point. In the model with
the logistic function F, yet another parameter is the value of
function F�P� at the critical point. In the Alle model there is a
third important parameter Ð the value of the first derivative
of FP�P� at the critical point.

Notice that the bifurcations considered above may prove
to be insufficient for investigating the automodel system. Let,
for definiteness, the reproduction rate function F�P� in model
(A) be a polynomial, whereas the taxis function H�P� is
nonpolynomial and is expanded into a Taylor series at the
critical point.

Consider the case (see Section 4.1) when in the system (3)
with linear function F a certain degeneration occurs: the
coefficient of p2 in the function G�p� vanishes: f � 0. Then at
the critical point of the automodel system a codimension-2
bifurcation `zero of the first Lyapunov value' can occur (see
Refs [40, 45]), and its analysis requires calculation of the
coefficient of p4 in the functionHp�p�.

In the system (3) with the quadratic function F (see
Section 4.2), degeneration in the automodel system can lead
to a codimension-3 bifurcation `turn of tangency' [42].

Finally, degeneration in the system with the cubic growth
function F (see Section 4.3) can lead to bifurcations of
codimension 4 [46].

In the course of all such degenerations, the variety of
possible wave solutions of the system is broadened. However,
the ranges of parameter values, at which these additional
regimes are established, are rather small.

5. Wave solutions of model (B) and the problem
of pattern formation

As pointed out above, the phenomenological model of a
population with taxis (A) and the model of a population with
autotaxis (B) have wave (automodel) systems of the same
type, which are satisfied by theP-component of solutions (C1)
and (C2) (`travelling waves of population density'). In this
case, the role of the taxis intensityH�P� in the generation and
bifurcations of these waves of model (A) corresponds to the
role of the autotaxis intensity R�P� of model (B). Thus, the
description and bifurcational analysis of the wave solutions
for model (A) are also fully valid for the P-component of
model (B) up to the substitution of the function R�P� for
H�P�.

The conclusions implied by the analysis findings are as
follows.

For the autotaxis of linear intensity the basic wave
solutions of the considered models are monotonic wave
fronts. Triggering of nonlinear autotaxis may change not
only the velocity and form of monotonic solutions, i.e. the
wave fronts of the model, but also, which is most important,
`give rise to' the potential existence of various rough non-
monotone waves 4.

Now note that the nonmonotone waves, trains and pulses,
become particularly important because the modes corre-

sponding to them may be interpreted as `dynamic patterns',
i.e. spatial patches of high population density, which arise and
move in the environment of domains with low-population
density. This phenomenon is observed for many systems.
Biophysicists give much attention to various aspects of
studies of the corresponding regimes [36, 37, 55, 56] (see also
Refs [9, 10]).

It may be concluded that such dynamic patterns (under
their conditions of stability) represent a new aspect in solving
the problem of formation of pulsing `density patches', i.e. a
classical problem of mathematical ecology, which is rather
important in studies of the dynamics of forest insect
populations, plankton communities, etc.

Analysis of the stability of the described nonmonotone
wave modes resulting from the nonlinear autotaxis is a rather
complexmathematical problem going far beyond the scope of
this work (its various aspects were considered, for instance, in
Refs [30, 57 ± 63].

It may only be suggested that the stability conditions of
the wave solutions of the models should include conditions
for the stability of corresponding solutions of local and
automodel systems. (An interesting example is given by the
Burridge ±Knopoff model [64]. The authors proved by
computations the existence and thus stability of wave trains
with parameter values from a certain interval. They showed
that two Andronov ±Hopf bifurcations occur at the end
points of this interval both in the local part of the model and
the corresponding automodel system; such that the stable
limit cycle appearing at one end point disappears at the other.
Thus a stable wave train exists in the Burridge ±Knopoff
model with the same parameter values.)

Note, finally, that the nonmonotone spatial regimes are
highly interesting even in the case of instability because they
may be realized as transient modes on variation of the system
parameters [28, 55, 56, 65].

6. Examples

Example 1.The dynamics of amyxobacterial population were
studied in Ref. [38] using model (B) in which the functions
F�P� � 0, F1�P� � wP, F2�S� � 1=S, T1�P� � lP, T2�S� � S
�w > 0�. It was shown numerically that aggregation in the
population is possible at l > 0 and for certain initial
distributions.

The results obtained in the present work make it possible
to find the exact `travelling wave' solutions of the model for
functions of a prescribed form. To solve this problem it is
sufficient to use the automodel equation (8) that here acquires
the form 5

px � Cp� R�p�
C

; C > 0 ;

where R�p� � lwp2. At l < 0, this equation has two equili-
brium points p1 � 0, p2 � ÿC 2=�lw�; the `travelling wave'
solutions are expressed as

P�x � x� Ct� � ÿC 2

lw

�
1ÿ c2

exp�Cx� � c2

�
;

where c2 is an arbitrary constant. The function P�x� ! p1 as
x! ÿ1 and P�x� ! p2 as x!1, if the wave velocity
C > 0.4 Let us recall that such regimes with high amplitudes correspond to wave

trains and a wave pulse, which are solutions of models (A) and (B) with

cubic functions of local growth F�P� and again the cubic intensity of taxis

H�P� in model (A) and intensity of autotaxis R�P� in model (B).

5 The case of the linear function R�p� is considered in Ref. [5] (see also

Ref. [10]).
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For l < 0, both points p1 and p2 lie in the first quadrant
(Fig. 8), i.e. they may be interpreted in terms of population
densities. Thus, at a velocityC > 0 the model describes waves
propagating from right to left, i.e. `reproduction waves' (the
direction of wave propagation is indicated with an arrow in
Fig. 8).

The stability of analogues waves was demonstrated in
Ref. [66].

But if l > 0, only the point p1 has a `biological' sense.
Hence, at positive densities the model has no bounded waves.

Example 2. Let a Malthusian density growth occur in the
local population corresponding to model (A), starting from a
certain threshold g > 0: F�P� � a�Pÿ g�, a > 0. The occur-
rence of random spatial migrations of individuals as well as
the nonlinear taxis (of cubic intensity) lead in spatial model
(A) to the appearance of bounded density oscillations close to
the value P � g (which propagate in space x with a constant
velocity). This means that the unlimited population density
growth might not occur even for a Malthusian function of
local growth. An analogous argument is valid for model (B)
with nonlinear (cubic) autotaxis.

Example 3. Let the local population kinetics be described
by a logistic type law

F�P� � a�Pÿ g��1� gÿ P� ; a > 0; g > 0 :

The occurrence of random migrations in spatial model (A)
leads to the appearance of monotonic spatial density waves
(similar to those in the Fisher model). The density-dependent
taxis (of quadratic intensity) can `generate' spatial density
oscillations in the vicinity of P � g as well as a wave pulse.
Such waves do not exist in the logistic taxis-free population.

Example 4.From the viewpoint ofmodelling two different
ecosystems, forest insect phytophages and some plankton
communities, possess similar features in their dynamics: they
have a density-dependent nonmonotone reproduction rate,
can give population outbreaks that spread over large
territories, and are capable of forming spatial population
structures. It is also known that in such systems an important
role is played by taxis, and in a number of cases by autotaxis.
Thus, models (A) and (B) with a cubic rate of local growth can
be used in modelling the spatial dynamics of such ecosystems.
Let us dwell upon model (A) with a cubic F�P� (see Section
4.3), applied to modelling the dynamics of forest insects
populations.

(1) At h > 0, themodel describes the situation inwhich the
local population can exist in two stable equilibrium states, i.e.
with `stable' �u1� and `metastable' �u2� densities (and in the
unstable equilibrium with the `escaping density' u3:
u1 4 u3 4 u2). Transition to metastable equilibrium is
usually interpreted as a `number outbreak' that can spread
in space in the form of a so-called `fixed outbreak' of the
population [11, 12, 15]. In the model, the wave fronts with
amplitudes u2 ÿ u1 correspond to this mode. The occurrence
of taxis in the phytophage population can lead to generation
of nonmonotone waves in the model and to modification of
the velocity and shape of monotonic waves (see Sections 4.3,
4.4), in particular, to the increase or fading of the outbreak.
Additional possibilities arise here for describing the outbreak
development. Let us consider the scenario of successive
modifications of a periodic `standing' wave (see Fig. 3)
taken as the initial distribution, based on the analysis of the
model parametric portrait (see Fig. 6). The increasing of the
absolute value of the velocityC leads firstly to the appearance
of waves with a slowly changing period and growing
amplitude and then to a wave pulse; after this a transient
mode (one of the monotonic half-waves) arises, and ulti-
mately a stable wave front is formed. Thus, for an external
observer, the reproduction wave starts with increasing spatial
oscillations of population number. The outbreak's extinction
can be considered in a similar manner.

The results obtained form the basis for explaining the
generation of two different types of outbreakmodes. The first
type is characterized by a `refuge' initial distribution over the
forest territory, with biotopes favorable for the phytophage
placed at distances considerably exceeding the radius of insect
dispersal. The number outbreak starting with one biotope
develops into a single wave front. The loss of stability and
destruction of the forest cover occur in relatively small areas.
In the second case, the favorable biotopes are situated rather
close to each other, i.e. the initial distribution is quasi-
periodic. According to the above-discussed results, it is this
distribution that after passing through the stage of slow
nonmonotone low-amplitude waves can develop into an
outbreak covering simultaneously a large area of the forest
cover [12].

Apparently, analogous scenarios are possible for the
development of spatially heterogeneous density distributions
in plankton communities.

(2) Model (A) with cubic functions of local kinetics F and
taxis H at h < 0 (see Section 4.3) describes the case when the
local system has a single stable equilibrium with density u3
and its `attraction domain' is bounded by the densities u1 and
u2.

This version of model (A) is applied for investigating the
so-called `permanent' and `proper' number outbreaks that are
realized in populations of certain species of forest insects (the
former is characteristic of Bupalus piniarius L. and some
others, while the latter is typical of Dendrolimus sibiricus
superans T., Ocneria monacha L. and some others (see Refs
[15, 16])).

The `permanent outbreak' is characterized by population
number oscillations of very high intensity, at which the values
of maximum andminimum population density are larger and
smaller than the equilibrium densities u2 and u1, respectively.

The `proper outbreak' consists in the following: the insect
population increases to such an extent that the population
density becomes larger than the maximum equilibrium u2. As
a result, the insects destroy the forest (this effect is compar-

P

p2

x

p1

Figure 8. For F�P� � 0, F1�P� � wP, F2�S� � 1=S, T1�P� � lP,
T2�S� � S �w > 0, l < 0�, model (B) has a family of bounded monotonic

`travelling wave' solutions with the wave propagation velocity C and the

`amplitude'
��C 2=�lw���.
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able to that of a forest fire), then the population sharply
decreases and recovers subsequently to the low stable
population density u1 to be maintained for many years.
Notice that such a wave spreads over forests covering vast
territories.

A model analogue of the `proper outbreak' mode is
realized in domain V of the model parametric portrait
shown in Fig. 7, while an analogue of the `permanent
outbreak' is realized in domain VIII of this parametric
portrait. The major boundary between these domains is the
parametric surface corresponding to the homoclinic curve
(`large' separatrix loop) of the automodel system. According
to Proposition 1, this boundary corresponds to a wave pulse
with an amplitude larger than the difference of maximal and
minimal equilibrium densities: a > u2 ÿ u1.

Thus, for a population capable of realizing both modes of
outbreak reproduction 6, these regimes are neighboring in the
parametric space.

We presume that the dynamic regimes and developmental
scenarios of the population number outbreaks may be
realized not only for forest insect populations (where they
are really observed) but also for other populations (of Alle's
type with nonlinear taxis) and in other complex biological
systems. In this context, the revealed `parametric' closeness of
regimes with substantially different dynamic characteristics
(including dangerous ones) is of high conceptual significance.
Investigation of these problems still awaits continuation,
which could undoubtedly make use of the structure of wave
regimes derived from the analysis of models (A) and (B).

7. Conclusions

Investigation of the wave regimes of a conceptual population
system with directed migration fluxes in the vicinity of local
model equilibria makes it possible to consider only the
polynomial functions of local growth and taxis (autotaxis).

Analysis of the `travelling wave' solutions of the poly-
nomial models described by the `reaction ± taxis ± diffusion'
and `reaction ± autotaxis ± cross-diffusion' models implies the
following conclusions about the role of taxis and autotaxis
processes.

The existence of an `appropriate' nonlinear taxis can
change not only the velocity and shape of wave fronts but,
which is most important, also lead to the establishment of
different `rough' spatially heterogeneous wave regimes.
Among these, the wave modes with large amplitudes of
density pulsing are of main interest (depending on their
interpretation, such regimes may be regarded as either
dangerous or highly productive). On the other hand, taxis
can have a stabilizing effect on the dynamics of a spatially
distributed population system and create, even for Malthu-
sian local growth, appropriate conditions for the potential
existence of populations in the regime of bounded spatial
oscillations.

The parametric diagrams plotted from the results of this
work systematize the types of dynamic regimes and make it
possible to follow their substitution depending on changes of
the model parameters. The relevant analysis was based on the
method of normal forms of bifurcations, according to which
the diagrams obtained are preserved with variation of the
constituent functions of the model. This allows extension of

the results of analysis of the polynomial models to certain
models with nonpolynomial functions of local growth and
taxis/autotaxis intensity. Of course, in addition to the above-
discussed regimes, one can also expect in each such model the
appearance of other spatial dynamic modes.

The problem of the analysis of stability of the revealed
regimes requires further studies going far beyond the scope of
this work. Notice only that all of the established wave modes,
being exact solutions of the model system, must be realized for
appropriate initial spatial distributions. It is also noteworthy
that unstable regimes can likewise be realized as transient
ones on variation of the system parameters.

This study has enabled us to consider the formation of
spatially heterogeneous distributions in nonlinear dynamic
systems as a problem of generation of `travelling waves' in
`reaction ± taxis ± diffusion' type models. For biological sys-
tems, such as populations of forest insects or plankton
communities, these regimes may be interpreted as dynamic
spatial `patches of high population density' in environments
of low-density fields.

It is important to note that diverse possible wave regimes
arise at values of parameters that correspond to the critical
points of the model. This allows the use of standard methods
of bifurcation theory for working out the criteria of
approaches to `dangerous boundaries'.

We thank M A Tsyganov for fruitful discussions and
numerical experiments. This work was supported by the
Russian Foundation for Basic Research (grants 98-01-00483
and 99-04-49450).

References

1. Semevski|̄ F N, Semenov S M Matematicheskoe Modelirovanie

Ekologicheskikh Protsessov (Mathematical Modelling of Ecologi-

cal Processes) (Leningrad: Gidrometeoizdat, 1982)

2. Tinbergen N Social Behavior in Animals, with Special Reference to

Vertebrates (London: Chapman and Hall, 1990) [Translated into

Russian (Moscow: Mir, 1993)]

3. Patlak C S Bull. Math. Biophys. 15 311 (1953)

4. Adler J Science 153 708 (1966)

5. Keller E F, Segel L A J. Theor. Biol. 30 235 (1971)

6. Keller E F, inChemotaxis: Its Biology and Biochemistry (Antibiotics

and Chemotherapy, Vol. 19, Ed. E Sorkin) (Basel: S Karger, 1974)

7. Monk A, Othmer HG Philos. Trans. R. Soc. London 323 185 (1989)

8. Murray J D Mathematical Biology ( Biomathematics, Vol. 19) 2nd

corr. ed. (Berlin: Springer-Verlag, 1993)

9. Ivanitski|̄GR, Medvinski|̄ A B, Tsyganov M AUsp. Fiz. Nauk 161

(4) 13 (1991) [Sov. Phys. Usp. 34 289 (1991)]

10. Ivanitski|̄GR, Medvinski|̄ A B, Tsyganov M AUsp. Fiz. Nauk 164

1041 (1994) [Phys. Usp. 37 961 (1994)]

11. Svirezhev Yu M Neline|̄nye Volny, Dissipativnye Struktury i Katas-

trofy v Ekologii (Nonlinear Waves, Dissipative Structures and

Catastrophes in Ecology) (Moscow: Nauka, 1987)

12. Berezovskaya F S et al. Dokl. Akad. Nauk (Russia) 365 (3) 1 (1999)

13. Alle W C Animal Aggregation: A Study in General Sociology

(Chicago: Chicago Press, 1931)

14. Gorban' A N et al., in Problemy Ekologicheskogo Monitoringa i

Modelirovaniya Ekosistem Vol. 6 (Problems of Ecological Monitor-

ing and Modelling of Ecosystems) (Leningrad: Gidrometeoizdat,

1984) p. 161

15. Isaev A S et al. Dinamika Chislennosti Lesnykh Nasekomykh

(Dynamics of Forest Insect Populations) (Novosibirsk: Nauka,

1984)

16. Ludwig D, Jones D D, Holling C S J. Animal Ecology 47 315 (1978)

17. Davis B Probab. Th. Rel. Fields 84 203 (1990)

18. Othmer H G, Stevens A SIAM J. Appl. Math. 57 1044 (1997)

19. Kolmogorov A N, Petrovski|̄ I G, Piskunov N S Byull. Mosk. Gos.

Univ. 1 (6) 1 (1937)

20. Turing A M Philos. Trans. R. Soc. London Ser. B 237 37 (1952)
6 Populations of phytophages are known for which the first or the second

type of population outbreak is realized, depending on the forest state [15].

928 F S Berezovskaya, G P Karev Physics ±Uspekhi 42 (9)

http://www.turpion.org/info/lnkpdf?tur_a=ufn&tur_y=1994&tur_v=37&tur_n=10&tur_c=49


21. Romanovski|̄ Yu M, Stepanova N S, Chernavski|̄ D S Matemati-

cheskoe Modelirovanie v Biofizike (Mathematical Modelling in

Biophysics) (Moscow: Nauka, 1975)

22. Jorne J J. Theor. Biol. 65 133 (1977)

23. Vasil'ev V A, Romanovski|̄YuM, Yakhno V GUsp. Fiz. Nauk 128

625 (1979) [Sov. Phys. Usp. 22 615 (1979)]

24. Okubo A Diffusion and Ecological Problems: Mathematical Models

(Biomathematics, Vol. 10) (Berlin: Springer-Verlag, 1980)

25. Krinski|̄ V I, Zhabotinski|̄ A M, in Avtovolnovye Protsessy v

Sistemakh s Diffuzie|̄ (Autowave Processes in Systems with Diffu-

sion) (Ed. M T Grekhova et al.) (Gor'ki|̄: IPF AN SSSR, 1981) p. 6

26. Levin S A, in Proc. Conf. on Differential Equations and Applications

in Ecology, Epidemics, and Population Problems: Claremont, Calif.,

1981 (Eds S NBusenberg, K LCooke) (NewYork: Academic Press,

1981) p. 1

27. Aronson D G, in Mathematical Biology and Medicine (Eds

V Capasso, E Grosso, S L Paveri-Fontana) (1985) p. 2

28. Ivanitski|̄ G R et al. Usp. Fiz. Nauk 168 1221 (1998) [Phys. Usp. 41

1115 (1998)]

29. Kuznetsov Yu A et al., in Problemy Ekologicheskogo Monitoringa i

Modelirovaniya Ekosistem Vol. 14 (Problems of Ecological Mon-

itoring and Modelling of Ecosystems) (Leningrad: Gidrometeoiz-

dat, 1993) p. 198

30. Wei-Ming Ni Notices 45 9 (1998)

31. Samarski|̄ A A, Mikha|̄lov A P Matematicheskoe Modelirovanie

(Mathematical Modelling) (Moscow: Nauka, Fizmatlit, 1997)

32. Kopell N, Howard L N Stud. Appl. Math. LII 291 (1973)

33. Fife P, McLeod J B Arch. Rat. Mech. Anal. 65 333 (1977)

34. Levin S A, Segel L A SIAM Rev. 27 45 (1985)

35. Jager W, Luckhaus S Trans. AMS 329 819 (1992)

36. Agladze K L et al. Proc. R. Soc. London B: Biol. Sci. 253 131 (1993)

37. Tsyganov M A et al. Dokl. Akad. Nauk (Russia) 333 532 (1993)

38. Stevens A J. Biol. Sci. 3 1059 (1995)

39. Kopell N, Howard L N Adv. Math. 18 306 (1975)

40. Arnol'd V I Dopolnitel'nye Glavy Teorii Obyknovennykh Different-

sial'nykh Uravneni|̄ (Additional Chapters to the Theory of Ordinary

Differential Equations) (Moscow: Nauka, 1978)

41. Bogdanov R I, in Tr. Seminara im. I G Petrovskogo Vol. 2

(Transactions of I G Petrovski|̄ Seminar) (Moscow: Izd. MGU,

1976) p. 37

42. Berezovskaya F S, Khibnik A I, in Metody Kachestvenno|̄ Teorii
Differentsial'nykh Uravneni|̄ (Methods of Qualitative Theory of

Differential Equations) (Gor'ki|̄: Izd. GGU, 1985) p. 128

43. Bazykin A D, Kuznetsov Yu A, Khibnik A I Portrety Bifurkatsi|̄
(Portraits of Bifurcations) (Moscow: Znanie, 1989)

44. Dumortier F, Rossarie R, Sotomayor J, in Lect. Notes Math. Vol.

1480 (Berlin: Springer-Verlag, 1991)

45. Kuznetsov Yu A Elements of Applied Bifurcation Theory (Applied

Mathematics Science, Vol. 112) (New York: Springer-Verlag, 1995)

46. Khibnik A, Krauskopf B, Rousseau C Nonlinearity 11 1505 (1998)

47. Berezovskaya F S, in Matematika, Komp'yuter, Obrazovanie Vol. 5

(Mathematics, Computer, Education) (Ed. G Yu Riznichenko)

(Moscow: Progress ± Traditsiya, 1998) p. 22

48. Berezovskaya F S, Karev G P Dokl. Akad. Nauk (Russia) 368 (3) 5

(1999)

49. Marsden J E, McCracken M The Hopf Bifurcation and Its Applica-

tions (New York: Springer-Verlag, 1976) [Translated into Russian

(Moscow: Mir, 1980)]

50. Fisher R A Ann. Eugenics 7 355 (1937)

51. Zel'dovich Ya B et al.Matematicheskaya Teoriya Goreniya i Vzryva

(Mathematical Theory of Combustion and Explosion) (Moscow:

Nauka, 1980)

52. Nagumo J, Yoshikawa S, Arimoto S IEEE Trans. Commun.

Technol. 12 400 (1965)

53. Dumortier F, Rousseau C Nonlinearity 3 1015 (1990)

54. Molchanov A M Neline|̄nost' v Biologii (Nonlinearity in Biology)

(Pushchino: ONTI NTsBI, 1992)

55. Keller E F, Segel L A Theor. Biol. 26 399 (1970)

56. Budrene E O, Berg H C Nature (London) 349 630 (1991)

57. Henry D Geometric Theory of Semilinear Parabolic Equations (New

York: Springer-Verlag, 1981) [Translated into Russian (Moscow:

Mir, 1984)]

58. Vol'pert A I, Ivanova A N, in Avtovolnovye Protsessy v Sistemakh s

Diffuzie|̄ (Autowave Processes in Systems with Diffusion) (Ed.

M T Grekhova) (Gor'ki|̄: IPF AN SSSR, 1981) p. 33

59. Maini P K,Murray JD, Oster G F, inLecture Notes inMathematics

Vol. 1151 (Berlin: Springer-Verlag, 1985) p. 252

60. Maginu K J. Diff. Eq. 139 73 (1981)

61. Sattinger D H Adv. Math. 22 312 (1976)

62. Evanse J W, Feroe JMath. Biosci. 37 23 (1977)

63. Conley C C, Smoller J, in Lecture Notes in Mathematics Vol. 525

(Berlin: Springer-Verlag, 1976) p. 77

64. Cartwright J H E, Hermandez-Garcia E, Piro O Phys. Rev. Lett. 79

527 (1997)

65. Akhromeeva T S et al. Nestatsionarnye Struktury i Diffuzionny|̄
Khaos (Nonstationary Structures and Diffusive Chaos) (Moscow:

Nauka, 1992)

66. Gueron S, Liron N J. Math. Biol. 27 595 (1989)

September, 1999 Bifurcations of travelling waves in population taxis models 929

http://www.turpion.org/info/lnkpdf?tur_a=ufn&tur_y=1998&tur_v=41&tur_n=11&tur_c=503

	1. Introduction
	2. Description of models and the problem statement
	3. Models and automodel systems
	3.1 Model (A)
	3.2 Model (B)
	3.3 Wave solutions and phase curves

	4. Wave modes of some polynomial equations (A)
	4.1 Linear growth functions (Malthusian type models)
	4.2 Quadratic growth functions (logistic type models)
	4.3 Cubic growth functions (Alle type models)
	4.4 On monotonic wave solutions of equation (A)
	4.5 Nonpolynomial models

	5. Wave solutions of model (B) and the problem of pattern formation
	6. Examples
	7. Conclusions
	References

