
Abstract. The theoretical treatment of the evolution of a dis-
location ensemble in a plastically deformed real crystal is
discussed. Kinetic equations for the dislocation density are
formulated which include elementary dislocation processes
(source generation, immobilization, multiplication, annihila-
tion, and diffusion) and on the basis of which the first three
stages of the crystal's strain-hardening curves are quantita-
tively analyzed. Dislocation self-organization processes lead-
ing to slip localization and various nonuniform dislocation
structures are considered. Mechanisms of the formation of slip
lines, slip bands, defect-free (annihilation) channels in neutron-
irradiated or quenched crystals, and dislocation cellular struc-
tures are discussed in detail based on the equations obtained. A
comparison of theoretical results with experimental data is
made.

1. Introduction

The modern physics of strength and plasticity of crystals is
based on the discoveries made in 1920 ± 30s, the time when the
concepts were formulated of the elementary carriers of plastic
deformation and defects determining (reducing) the strength
of crystals: dislocations [1, 2], microcracks [3, 4], and
vacancies [5]. In the 1970s these were supplemented by the

concept of disclinations [6 ± 8]. The results of intensive
experimental and theoretical studies of the properties of
defects, dating back to the 1950s and 60s, formed the
substance of the new chapters of solid state physics: the
physics of the strength and plasticity of crystals, and the
physics of defects in crystals.

These studies have been summarized in a large number of
monographs [8 ± 16] and reviews [17 ± 25], as well as impor-
tant publications in Usp. Fiz. Nauk [26 ± 33]. They provided
physical validation for the widely used methods for improv-
ing the strength of structural materials, and for the theoretical
basis for creating new materials with better deformation and
strength properties.

By the mid-1970s, however, it became clear that a theory
that is based on the properties of individual defects and simple
models of their interactions is not capable of explaining the
entire diversity of strength and deformation properties of real
materials, and cannot account for such features as the
multistage nature of strain-hardening curves [17, 19 ± 22,
34], localization of plastic deformation as a system of slip
lines and bands [34 ± 42], formation of various dislocation
structures (cells [43 ± 49], blocks [50, 51], disoriented struc-
tures [52 ± 55], fragmented structures [56], annihilation
structures [57 ± 59], and structures specific to the mechanical
fatigue of crystals [60 ± 62]).

This list ought to be supplemented by the formation (on
the macroscopic level) of LuÈ ders [63, 64] and Portevin ±
Le Châtelier [65, 66] regions (bands) of inhomogeneous
plastic deformation, Danilov ± Zuev deformation waves [67,
68], adiabatic shear bands in the case of low-temperature
deformation and high-strain-rate deformation [71, 72], super-
localization of deformation in the form of coarse slip lines
when the crystal is loaded at elevated temperatures [34, 73],
unstable (serrated) stress ± strain diagrams [65, 66, 69, 70],
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which are an indication of the spatial and temporal instability
of plastic deformation and the development of regimes of
critical self-organization and deterministic chaos [74 ± 76].

Along with the traditional optical techniques [34 ± 40],
extensively used were various microscopic techniques (repli-
cas [37, 38], selective etching [41, 42], and transmission
electron microscopy [43 ± 49]. The results lead to the conclu-
sion that the observed diversity of deformation and disloca-
tion structures derives from the natural evolution of the
dislocation ensemble, dependent on the crystal structure and
the deformation conditions, and the development of collec-
tive, cooperative phenomena.

This necessitated the construction of the theory of
dislocation ensembles in crystals subjected to plastic deforma-
tion, and the formulation of the kinetic equations for
describing the space ± time evolution given the real deforma-
tion condition. The first attempts to express such equations as
a kinetic equation for homogeneous density of dislocations as
function of time [77 ± 79] or current strain [80 ± 82] date back
to the 1960s. Although these equations were rather heuristic,
and based on intuitive assumptions, they demonstrated the
existence of a fundamental relationship between the evolution
of the density of dislocations (the processes of multiplication
and annihilation of dislocations) with the kinetics of high-
temperature creep [77], with the shape of the curve of strain
hardening [82], and with the `tooth' (yield point) in the
deformation diagrams of low-dislocation crystals [80].

Subsequently these equations were augmented with terms
accounting for the spatially inhomogeneous distribution of
dislocations in crystals. Such extended equations were used
for analyzing the emergence of spatially inhomogeneous
dislocation structures (cells [84], tangles [85 ± 87]), and the
localization of deformation in the form of bands of adiabatic
shear and heating when the crystals were stressed at helium
temperatures (� 4.2 K) [88, 89].

Concurrently with the model treatment, a theoretically
more consistent approach to the formulation of dislocation
kinetic equations based on the statistical averaging of
dynamic and kinematic relations that describe the state and
motion of dislocations in the dislocation ensemble [90 ± 97]
was also developed. The results will be discussed in Section
2.1.

The next major step in formulating the equations of
evolution of a dislocation ensemble was made in the mid-
1980s. Following the recognition of the synergetic nature of
self-organization of thermodynamically nonequilibrium
(dissipative) structures in various physical [98 ± 100], chemi-
cal [101] and biological [102 ± 104] systems, the synergetic
approach was also applied to the dislocation ensemble. The
equations of evolution were expressed as a system of non-
linear reaction ± diffusion equations in the densities of mobile
and immobile dislocations [105 ± 113]. The kinetic interaction
between these resulted in the loss of spatial stability by the
dislocation ensemble, and gave rise to inhomogeneous
dislocation structures in the crystal [114 ± 118].

Equations of this type were formulated for the densities
of dislocations of different signs [106, 119 ± 123], disloca-
tions in intersecting slip systems [116, 124], and for a
dislocation±disclination ensemble [125 ± 128]. Although the
equations took into account the processes of multiplication,
diffusion, immobilization, and annihilation of dislocations
that control the actual evolution of a dislocation ensemble,
the main purpose of most authors was to announce the
possibility of analyzing some or other of the above-

mentioned phenomena from the standpoint of synergetics.
Because of this, most of the theoretical results are
qualitative by nature, and cannot be used for making direct
comparisons with experiment.

Such comparison, however, is very important, inasmuch
as it may help us to understand to what extent it is the kinetic
processes, including the processes of self-organization of
dislocations, that determine the formation of various disloca-
tion and deformation structures in crystals, as well as the
character and the multistage nature of curves of strain
hardening of crystals.

In this review we build on the works where such a
comparison has been made, and critically evaluate the
available results of statistical averaging of dislocation
ensembles, to demonstrate that the kinetic processes are
definitive for the phenomena discussed here.

The review is formatted as follows. In Section 2, we give
the main equations and relations of the continuum theory of
dislocations, and outline the procedure for statistical aver-
aging of dislocation ensembles. A simplified procedure is then
used for expressing the kinetic equations for the density of
dislocations, which cover the principal elementary processes
involved in the space ± time evolution of a dislocation
ensemble in real crystals.

In Section 3, under the assumption of homogeneous
distribution of dislocation density, we see how these equa-
tions agree with the typical three-stage curve of strain
hardening of crystals at the temperatures T < 0:5Tm, where
Tm is the melting temperature.

In Section 4, we use the equations of Section 2 for
analyzing the process of formation of slip lines and bands at
the initial stage of plastic deformation of crystals (in the case
of single slip). We also consider the special cases of
localization of deformation in the form of coarse slip lines
resulting from the dislocation-free and defect-free channels in
the case of plastic deformation of metal crystals subjected to
irradiation, quenching, or deformation at a low temperature.

In Section 5, we use our equations for analyzing the
mechanism of formation of a cellular dislocation structure
in the case of multiple slip, and consider the particular
features of formation of dislocation structures in polycrystal-
line materials.

In this discussion, we assume that the dislocation
ensemble contains an equal number of dislocations with
opposite signs of the Burgers vector. Because of space
limitations, we do not discuss here the mechanism of
formation of misoriented and fragmented dislocation struc-
tures associated with the presence of excess (noncompen-
sated) density of dislocations of one sign. To take into
account the effects of incomplete plastic rotations, the
equations of the continuum theory of dislocations must be
supplemented by equations and relations of the continuum
theory of disclinations [6, 94, 129, 130].

In the Conclusion, we summarize our discussion and
outline the directions of further study. We also discuss the
common features of certain ensembles that, like a dislocation
ensemble, consist of linear objects Ð for example, vortex
filaments in hard superconductors [131, 132], or thermal
vortices in superfluid helium [133, 134].

To facilitate comparison between theory and experiment,
the review contains illustrative material drawn from pub-
lished results, as well as original results obtained by the
author or derived from the experimental data found in
literature.
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2. Equations of evolution
of a dislocation ensemble

On themicroscopic level, the plastic deformation of crystals is
the result of motion of linear defects Ð dislocations, and in
the more general case dislocations and disclinations. The
former are the boundaries of those regions of a crystal where
one part of the crystal has experienced a translational shear
with respect to another by the Burgers vector b, whereas the
latter are the boundaries of regions where one part of crystal
has experienced a plastic rotation with respect to another by
the Frank vectorX.

In this way, dislocations are the boundaries of regions of
incomplete plastic shear, and disclinations are those of
incomplete plastic rotation. The continuum theory of disloca-
tions and disclinations [6, 16, 94, 129, 130], given the
distribution of defects in crystal, allows the distribution of
fields of stress sik, strain eik, and strain rate _eik to be found Ð
that is, the parameters that determine the strength and
deformation of the material.

2.1 Basic equations
In the case of a purely dislocation ensemble, there are the
following equations and relations:

for the external s ext
ik and internal s in

ik stress

qsik
qxk
� 0 ; sik � s ext

ik � s in
ik ;

s in
ik �

�
Aiksp�r 0 ÿ r� asp�r 0; t� dr 0 ; Fl � Elpqnpbssqs ; �2:1�

for the tensor density of dislocations asp and its flux Jlp

qasp
qt
� Esql

qJlp
qxq
� 0 ;

qasp
qxp
� 0 ; Jlp � Elqsaspuq ; �2:2�

for strains and strain rates (elastic and plastic)

eik � e elik � e plik ; e elik �
�
Biksp�r 0 ÿ r� asp�r 0; t� dr 0 ;

e plik �
�

_e plik dt ; _eik � _e elik � _e plik ;

_e elik �
�
CikmlJml dr

0 ; _e plik �
1

2
�Jik � Jki� : �2:3�

In Eqns (2.1) ± (2.3), Aiksp � ÿcikmnEnjscpjqlGqm; l, Biksp �
�EsimclqmpGqk; l��ik�, Cikml � ÿcnjml�Gij; nk��ik�, Gqm�r 0 ÿ r� is the
tensor Green's function of the static theory of elasticity of
crystals, cikmn is the tensor of elastic constants, Enjs is the
commutation tensor, Fl is the force with which external and
internal long-range stresses act on the dislocation, n is the unit
vector of the tangent to the dislocation line, u is the
dislocation velocity, and asp �

P
a a

a
sp is the tensor density of

dislocations with different Burgers vectors.
In Eqn (2.1), we have neglected the dynamic components

of external and internal stress because the movement of
dislocations in the case of ordinary plastic deformation is
predominantly quasistatic in nature: force F acting on the
dislocation is balanced out by the force of friction
F �f� � nbs�f� resulting from the interaction of a moving
dislocation with the Peierls relief [15], with point obstacles
such as the impurity atoms [13], or with the `dislocation
forest' [21, 24]. A dislocation moving at a high (super-

barrier) velocity experiences viscous friction due to the
interaction with the electron [30] and phonon [32] subsystems
of the crystal.

As a result, the equation of balance of stresses applied to
the dislocation with Burgers vector ba is (superscript a is
dropped):

ni�s ext
ik � s in

ik �bk � bs�f� ; s�f� � s��u;T� � sf � sm : �2:4�
Here n � n� n is the unit vector to the slip plane of the
dislocation (n being the unit vector normal to the direction of
motion of the dislocation), b � jbj.

The friction stress s �f� is contributed to by the effective
stress s� which depends on the velocity of the dislocation and
the temperature T, by the athermal component of friction
stress sf resulting from the interaction of dislocation with
point obstacles or Peierls relief, and by the deformation
(dislocation) hardening of crystal sm which depends on the
scalar density of dislocations.

The stress of viscous drag of a dislocation moving at a
high velocity �u > 10ÿ3us� is a linear function of the velocity
sv � �B=b�u, where us is the speed of sound, and B is the
coefficient of viscous drag [30, 32]. According to Eqn (2.4),
the velocity of thermally activated motion of a dislocation is

u � xu ; u � us exp

�
ÿH�s��

kT

�
;

s� � ni�s ext
ik � s in

ik � bkjbjÿ1 ÿ sf ÿ sm ; �2:5�

where H�s�� is the activation energy, and k is the Boltzmann
constant.

Thus, knowing the distribution of the density of disloca-
tions â�r; t�, we can use the equations of motion (2.4), (2.5) for
finding the flux of dislocations Ĵ�r; t�, and Eqns (2.1) and (2.3)
for finding the distribution of stress, strain, and the strain
rate.

As pointed out in the Introduction, in the case of plastic
deformation of real crystals, the dislocation ensembles
undergo a sophisticated evolution that depends on the
internal structure of the crystal and on the deformation
conditions. Since the equations of continuum theory of
dislocations have been derived for a structureless continuum
of geometric points, they are not capable of describing this
evolution and establishing the physical scale of the phenom-
ena. This requires considering the dislocation ensemble in the
crystal as a set of discrete particles (dislocations) possessing
individual physical parameters (Burgers vector, velocity,
orientation of the dislocation line). The interaction between
the particles, or between particles and other important (in the
sense of their effect on the evolution of the dislocation
ensemble) structural features is definitive for the space and
time scales of the processes.

The standard approach to the solution of such a `many-
body problem' is to introduce the distribution function of
particles with respect to some principal dynamic parameters
(coordinates, velocities), to formulate the kinetic equation,
and to perform statistical averaging of the ensemble with the
purpose of expressing the equations of motion in the
statistical means [134 ± 138]. This obvious method for con-
structing the equations of evolution of a dislocation ensemble
has been employed by some authors. For example, inRef. [90]
the model of a one-dimensional laminar flow of a `dislocation
liquid' and the one-particle function of distribution of
dislocations with respect to velocities were used for expres-
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sing the equation of evolution of dislocation density which
took into account the dynamic effects Ð that is, the inertial
(field) mass of dislocations. A similar result for the three-
dimensional `Coulomb gas' of dislocations was obtained in
Refs [91, 94].

Note that, in view of the small mass of dislocations, the
inclusion of the dynamic effects is apparently interesting only
in the case of high-speed (shock) deformation of materials.
Under ordinary loading conditions, the motion of a disloca-
tion is quasistatic in nature. The main contribution to the
evolution of a dislocation ensemble comes not from the
dynamic but from the kinematic effects related to the
processes of generation of dislocations at dislocation
sources, multiplication of dislocations, diffusion, annihila-
tion, correlation, and polarization. For example, using the
two-particle function of distribution of dislocations with
respect to coordinates it was possible to analyze the effect of
shielding of dislocations of one sign by dislocations of the
opposite sign in a two-dimensional ensemble of screw
dislocations [139, 140].

As regards other elementary processes that determine the
evolution of a dislocation ensemble, the relevant `collision
terms' were mainly expressed from phenomenological and
heuristic considerations, using the two-dimensional state-
ment of the problem. The exception is Ref. [52], where the
microscopic approach was used for expressing the `collision
integral' responsible for the multiplication of dislocations on
such obstacles as disperse particles and inclusions.

2.2 Microscopic equations
To illustrate the difficulties encountered with the three-
dimensional model of the dislocation ensemble and set the
guidelines for a consistent expression of kinematic `collision'
terms in the three-dimensional statement of the kinetic
problem, let us consider in greater detail Eqn (2.2) for the
tensor density of dislocations and its flux.

The first equation in (2.2) is the equation of conservation
of the Burgers vector [16]. Since the Burgers vector in crystals
is constant along the dislocation line, this equation is simply a
kinematic relation that reflects the fact that dislocationsmove
as lines rather than points [141].

Observing that an individual dislocation loop is a
dislocation ensemble with the density of dislocations
aasp � ba

s dp�l a� [6], where d�l� is the delta function defined on
the directional line of a dislocation [142], we rewrite Eqn (2.2)
for clarity in vector form, dropping the constant vector b (the
`mechanical charge' of dislocation) and superscript a:

qd�l�
qt
� H� ÿu� d�l�� � 0 ; H � d�l� � 0 : �2:6�

Transforming the triple vector product, we obtain the
equation of conservation of density of the directional
dislocation line, which includes a transport part and an
inhomogeneous part:

qd�l�
qt
� H � ÿu d�l�� � uH � d�l� � ÿd�l�H� u ; H � d�l� � 0 :

�2:7�
The terms on the right-hand side of this equation account for
the change in length and orientation of the dislocation line
and its individual segments as it moves along.

The condition H � d�l� � 0 implies that the dislocation line
either is closed or ends at the surface. If it lands on the
Frank ±Read dislocation source with a critical length lF, then

H � d�l� � lÿ1F d�lF�, where d�l� is a delta function defined on a
nondirectional dislocation line [6, 142]. We may symbolically
assume that dp�l� � np d�l� (where n is the unit vector tangent
to the dislocation line, introduced above).

The gradient of velocity of the dislocation in the direction
of the tangent to the dislocation line on the right-hand side of
the first equation in Eqn (2.7) describes the change in
orientation and length of the dislocation owing to the
presence of an inhomogeneous external and internal (long-
range, local, and stochastic) fields of stresses that affect the
direction of motion of dislocation and its velocity:ÿ
d�l�H� u � d�l� qu=ql.

On the strength of Eqn (2.5) and arguments developed
above, the equation of evolution of directional segments of a
dislocation loop of arbitrary shape may be expressed on the
microscopic level in the explicit form [141]:

qd�l�
qt
� H � ÿu d�l�� � uF

lF
d�lF� � u

Rn
d�l�

� q ln u
ql

u d�l� � n
u

Rn
d�l� ; �2:8�

Rÿ1n �
�
qm
ql

qm
ql

�1=2

; Rÿ1n �
�
qn
ql

qn
ql

�1=2

:

Here Rn and Rn are the radius of curvature and the radius of
`spiraling' of the dislocation line.

As follows fromEqn (2.8), the radius of spiraling is finite if
the dislocation line evolves in space passing from the initial
plane into a non-coplanar plane, with the unit vector normal
to the slip plane changing in the direction of the dislocation
line.

The `relaxation' processes on the right-hand side of Eqn
(2.8) have the following characteristic times: tF � lF=uF is the
action time of the Frank ±Read source; tn � Rn=u is the time
of formation of a dislocation segment with radius of
curvature of Rn, or a circular loop with that radius;
tn � Rn=u is the time in which the length of a segment
increases as it goes into the noncoplanar plane.

As regards the relaxation time tl � �qu=ql�ÿ1 � Rl=u, it is
connected with the change in the orientation of the disloca-
tion line as it moves in the inhomogeneous fields of external
and internal stresses. Indeed, since u � u�s��, from Eqn (2.5)
we have [141]

Rÿ1l � q ln u
ql
� q ln u

qs�
qs�

ql
; b

qs�

ql
� n � qŝ

ql
� bÿ x _̂s _b

Rn
; �2:9�

where Rl is a parameter that characterizes the inhomogeneity
of the stress field.

Multiplying the first equation inEqn (2.8) dyadically from
the left by b, we obtain the microscopic equation for the
tensor density of dislocations

qâ
qt
� H � �uâ� � bjF

lF
� u

Rn
â� bj

Rl
� Ĵ

Rn
: �2:10�

Here j � u d�l� is the flux of the scalar density of dislocations,
jF � uF d�lF� is a similar flux from the Frank ±Read source,
Ĵ � b

ÿ
u� d�l�� � bnu d�l� is the flux of tensor density of

dislocations.
Now, when we multiply Eqn (2.8) from the right in scalar

manner by the unit vector tangent to the dislocation line m , we
obtain the microscopic equation for the nondirectional
dislocation line, that is, for its length (the scalar density of
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dislocations):

qd�l�
qt
� H � j � jF � m F

lF
� u

Rn
d�l� � �n 0 � m � u

Rn
d�l� ; �2:11�

where n 0 is the unit vector normal to the noncoplanar slip
plane where the dislocation segment goes to.

By contrast to the equations of the continuum theory of
dislocations (2.2), equations (2.10) and (2.11) have a discrete
character, and contain space-like (lF,Rn,Rl,Rn) and time-like
(tF, tn, tl, tn) parameters that define, depending on the
structure of the crystal and loading conditions, the physical
scales of evolution of the dislocation ensemble (see below).
Together with the quasistatic equations of motion of
dislocation (2.4) and (2.5), they describe the evolution of the
ensemble on the microscopic level. To obtain equations that
describe the kinetics of the ensemble on the mesoscopic and
macroscopic levels, one has to carry out statistical averaging
of the ensemble with due account for the interaction of
dislocations with one another, and with various obstacles in
the crystal that affect the kinetics.

2.3 Problem of averaging a dislocation ensemble
The problems encountered in the attempts to perform a
consistent averaging of a dislocation ensemble have been
more than once reported in the literature [16, 90 ± 93, 97, 113].
These problems are related to the geometry of dislocations
that behave as lines rather than points. Hence, come the
numerous attempts to reduce the three-dimensional kinetic
problem for the dislocation ensemble to the two-dimensional
case by dissecting the ensemble with a certain representative
plane, so as to treat is as an ensemble composed of pointlike
particles.

However, from Eqns (2.8) ± (2.11) we see that the
characteristic and significant feature of the evolution of
dislocations is the curvature of dislocations (the radius of
curvature Rn), because this curvature is related to the
fundamental property of dislocations and the dislocation
ensemble as a whole Ð their ability to multiply. Obviously,
the curvature of dislocations cannot be taken into account in
the framework of a two-dimensional model.

Another feature of dislocations is that, as indicated above,
the equations of motion of dislocations are dominated not by
the dynamic terms, but rather by the quasi-static terms related
to the force of friction of dislocations. Because of this, the
kinetic energy of dislocations under the ordinary plastic
deformation is many orders of magnitude less than the
energy of interaction of dislocations. Accordingly, the
problem of the `temperature' and the thermodynamic equili-
brium in the dislocation ensemble remains open.

Further on, owing to the diversity, complexity, and widely
ranging scales of interactions, it is difficult to establish a
universal hierarchy of small parameters that govern the
evolution of the ensemble on the appropriate scales.

Interactions of dislocations with one another and with the
obstacles in the crystal may be divided into two kinds: the
long-range (Coulomb) interaction, and the short-range
(contact, `inelastic') one. The former is associated with the
field of internal stresses from pileups of dislocations of the
same sign, the effects of polarization of dislocations and
misorientations of the lattice. The analysis of these effects
requires knowing the distribution of the tensor density of
dislocations â�r; t� in the crystal.

The contact interaction of dislocations determines the
processes of strain hardening and dynamic relaxation,

whereas the interaction of dislocations with various obsta-
cles in the crystal determines its resistance to deformation and
the processes of multiplication and immobilization of dis-
locations. For analyzing these phenomena and the formation
of various dislocation structures, one needs to know the
distribution of the scalar density of dislocations r�r; t� in the
crystal.

In Appendix I we describe the procedure of statistical
averaging of the dislocation ensemble that allows some of the
features of dislocations indicated above to be taken into
account. According to this procedure, the kinetic equation
for the ensemble-averaged scalar density of dislocations
r�r; t� with Burgers vector ba is

qra

qt
� H � �uara� � naua �

X
p

u a

lap
ra ; �2:12�

where lp is the characteristic free path of dislocations between
the elementary acts of change (increase or decrease) of the
length (density) of dislocations.

Into the right-hand side of Eqn (2.12) we have added a
term describing the generation of dislocations from disloca-
tion sources with the bulk density n�r; t�. In this form,
Eqn (2.12) is similar in structure to Eqn (2.11) expressed
from the kinematic relations (2.2) and (2.6). Averaging Eqn
(2.11) with the aid of an appropriate distribution function of
dislocations, we can obviously derive an equation of the type
of Eqn (2.12).

Indeed, the radius of curvature of dislocation Rn in the
case of a flat round loop is simply equal to its radiusR. As the
loop expands to the radius R � lp, the screw segments of the
loop may overcome the obstacles they meet through the
mechanism of double cross slip (DCS) [146, 147]. The act of
DCS gives rise to a Frank ±Read source in the adjacent
parallel plane, which leads to an increase in the density of
dislocations [148, 149].

The obstacles that initiate the DCS are the growth
dislocations with density r0 �lp / rÿ1=20 � [150], clusters of
impurity atoms and inclusion particles [148, 149, 151], as well
as forest dislocations with density rf that intersect the slip
plane �lp / rÿ1=2f � [24, 148, 152, 153]. Thus, the characteristic
scale of averaging of Eqns (2.11) and (2.12) must be greater
than the above free paths of dislocations which, as indicated
by the experiment, may vary over a rather broad range: from
10ÿ5 to 10ÿ3 m. As regards the third term on the right-hand
side of Eqn (2.11), its contribution to the total density of
dislocations in the case of DCS is small and can be
disregarded.

In the next section, we present the kinetic equations for
dislocations with due account for the results of this section
and the mechanism of multiplication of dislocations through
the double cross slip of screw dislocations.

2.4 Equations of evolution of the density of dislocations
As indicated by experiment, the plastic deformation of a
crystal starts with the activation of surface and bulk sources
of dislocations. The screw components of dislocation loops
emitted by the sources that act through the DCS mechanism
give rise to new sources of dislocations on the adjacent
parallel slip planes if the distance h to these planes is greater
than the critical distance

h0 � mb
8p�1ÿ nP��sÿ sf� ; �2:13�
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required for having a clearance between the edge components
of dislocation loops on the initial and the new slip planes [41].
Here m is the shear modulus, and nP is Poisson's ratio. If the
height of protrusion of the screw segment into the parallel slip
plane is less than the critical value h0, the Frank ±Read source
does not arise. Instead, there are two edge dipoles of height h
and length le � ls, where ls is the free path of screw
dislocations between the DCS acts.

In this way, the DCS mechanism in a crystal gives rise to
new mobile dislocations, and to sessile dislocations in the
form of edge dipoles [41, 148]. In addition, DCS transfers the
plastic deformation in a direction transverse to the initial slip
plane. Ejection of the screw segment into the parallel slip
plane is a random process, and occurs with a certain
probability [143 ± 149, 154]

P�h� � hÿ1c exp

�
ÿ h

hc

�
: �2:14�

This circumstance will be put to use in Section 4.
Taking into account the arguments developed above and

in Section 2.3, we may write the following kinetic equations
for the densities of mobile � rm�r; t�� and immobile (in the
form of edge dipoles) � ri�r; t�� dislocations (superscript a
dropped):

qrm
qt
� H � �urm� � nu� �lÿ1m � lÿ1f � urm

ÿ �lÿ1is � hiri� urm ÿ haurÿm r�m ; �2:15�
qri
qt
� lÿ1ie urm ÿ hduri rm : �2:16�

Here, lm and lf � df
P

c �rcf �ÿ1=2 [24, 113, 148, 152, 153] are
the free paths of screw dislocations between the acts of
multiplication on obstacles of nondeformation (grown-in
dislocations, inclusion particles) and deformation (forest
dislocations, df � 10ÿ2) origin; lis is the free path of screw
dislocations to annihilation or immobilization on the obsta-
cles of nondeformation origin; hi is the mean height of the
edge dipoles, the interaction with which results in the
immobilization of mobile dislocations; and ha is the char-
acteristic distance of annihilation of screw dislocations of
opposite signs �rÿm � r�m � rm�. In Eqn (2.16), lie is the free
path of screw dislocations between the acts of DCS with the
formation of edge dipoles; hd is the mean height of edge
dipoles being destroyed by mobile dislocations.

Equations (2.15) and (2.16) involve the most probable
dislocation processes that affect evolution of the dislocation
ensemble in the crystal subjected to plastic deformation given
the homogeneous distribution of dislocations. The relative
importance of individual processes depends on the structure
of crystals and conditions of deformation. These equations
were written under the assumption that the dislocation
ensemble in the crystal is neutral both in the global sense
(the sum of Burgers vectors of all dislocations is zero) and in
the local sense [the density of dislocations is â�r; t� � 0]. We
will use Eqns (2.15) and (2.16) for analyzing the curves of
strain hardening of crystals. A more comprehensive version
of these equations is considered in Sections 4 and 5.

3. Strain-hardening curves of crystals

Much like a voltage ± current characteristic, the strain-hard-
ening curve is the `passport' of the crystal, showing its

resistance to plastic deformation on the macroscopic level.
This resistance is the result of interaction of moving
dislocations with various obstacles in the crystal, and of
interactions between dislocations. It is the interaction of
dislocations with one another that underlies the process of
strain hardening of a crystal, that is, the increase in the
resistance of a crystal to plastic deformation with increasing
extent of plastic deformation (Fig. 1).

The problem of the mechanism of strain hardening and its
multistage nature was one of the first questions attempted to
be answered by the dislocation theory of the plasticity of
crystals [17, 19 ± 21]. Today, after extensive studies and
discussions, many authors agree that at the first stage of
hardening (the stage of easy slip) the predominantmechanism
of hardening is the interaction of mobile dislocations with
edge dipoles [20, 41, 148], and at the second stage, their
interaction with the dislocations of secondary slip systems
(with forest dislocations [24, 155, 156]). The third stage is the
stage of dynamical recovery, and is associated with the
annihilation of screw dislocations [24, 151, 157 ± 164].

Much attention over the past two decades has been paid to
the behavior of crystalline materials in the case of large (of the
order of several units) plastic deformations [165 ± 171].
Intensive studies led to the discovery of the fourth and fifth
stages of hardening, the mechanism of which is actively
discussed these days [172 ± 175].

In this review, we confine ourselves to the theoretical
analysis of strain-hardening curves within the first three
stages of hardening. The dislocation structures typical of
these stages are discussed in Sections 4 (single slip) and 5
(multiple slip).

For historical reasons, the mechanisms of strain hard-
ening were studied separately for each segment of the stress±
strain curve, out of connection with the other stages. At the
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Figure 1. Strain-hardening curve s�e� of a copper single crystal at 295 K
[156] (a), and the strain-hardening coefécient of copper y vs. the êow stress
s (b). Numbers mark the stages of hardening.
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same time, the process of plastic deformation of a crystal is a
continuous evolution of the dislocation ensemble, and the
transition from one stage to the next occurs smoothly enough
as the extent of plastic deformation increases.

Equations of evolution of dislocation density (2.15) and
(2.16) give a satisfactory qualitative and quantitative descrip-
tion of this process and the typical three-stage strain-hard-
ening curve with due account for various external and internal
factors [176, 177].

3.1 Multistage nature of strain-hardening curves
To demonstrate this, let us rewrite Eqns (2.15) and (2.16) in
the form

rm
drm
de
� bÿ1n� km rm ÿ �kis � kiri� rm

� kf
X
c

�rcf �1=2 ÿ ka r2m ; �3:1�

dri
de
� kie ÿ kd ri ; �3:2�

taking advantage of the fact that, under the conditions of
uniaxial tension or compression at a constant rate, we have
qrm=qt � �qrm=qe�_e, where _e � burm is the rate of plastic
deformation.

In Eqn (3.1), km � �blm�ÿ1 and kf � df bÿ1 are the
coefficients of multiplication of dislocations, kis � �blis�ÿ1
and ki � hi=b are the coefficients of immobilization of mobile
dislocations; ka � ha=b is the coefficient of annihilation of
screw dislocations. In Eqn (3.2), kie � �blie�ÿ1 is the coeffi-
cient of immobilization of dislocations in edge dipoles; and
kd � hd=b is the coefficient of destruction of edge dipoles by
mobile dislocations.

Equations (3.1) and (3.2) describe the change in the
density of mobile dislocations and the density of edge dipoles
with the increasing extent of plastic deformation. Let us look
at the evolution at the initial stage of deformation, when there
is no multiplication of dislocations on the dislocations of the
secondary slip systems, and no annihilation of screw disloca-
tions, while the destruction of dipoles by moving dislocations
is negligible. Then we have the equations

rm
drm
de
� bÿ1n� km rm ÿ �kis � ki ri� rm ; ri � kiee :

�3:3�
At the very start of deformation (the stage of microdeforma-
tion), when only the sources with constant bulk density n are
active and the first term on the right-hand side dominates in
Eqn (3.3), for the density of movable dislocations we obtain
rm � �2n=b�1=2e1=2.

In the case of laminar flow of dislocations of different
signs, the main mechanism of hardening is Taylor hardening:
s � a0mbr

1=2
m [19, 20], where a0 � 0:2 is the constant of

interaction between dislocations. Accordingly, the stage of
microdeformation ought to obey the law of deformation
hardening s � we1=4, where w=m � a0�2nb3�1=4. The s / em

behavior, where m � 0:25ÿ0:35, was reported in Refs [178 ±
181] at deformations e � 10ÿ5ÿ10ÿ3.

The critical shear stress (yield stress) is the point where the
dislocations in the crystal start multiplying through the DCS
mechanism [41, 148, 149]. Here, there are two possibilities. If
the density of surface and bulk dislocation sources is small
(the distance between the sources is large), one or several slip
bands are formed in the crystal, which expand by the DCS

mechanism and fill the crystal. Such an inhomogeneous
distribution of dislocations in crystal corresponds to a yield
plateau on the stress ± strain diagram. (The mechanism of
formation and broadening of slip bands is discussed in
Section 4.) If the number of sources is large, the deformation
of the crystal occurs in a rather uniformway. The edge dipoles
resulting from DCS serve as obstacles for moving disloca-
tions, and the flow stress increases in proportion to the
density of dipoles re [20, 41, 148]:

s � adbmhdre � we ;
w
m
� adhd

lie
; �3:4�

where ad � 1ÿ3, hd=lie � 10ÿ4.
In a pure form, the dipole hardening can be observed in

specially designed experiments with pure shear [148, 182], and
in crystals carefully oriented to ensure single slip [21]. In
ordinary experiments with uniaxial extension or compression,
owing to the accommodation processes and activation of the
secondary slip systems by the fields of internal stress caused
by pileups of dislocations of the same sign, the edge dipoles
are supplemented by other obstacles for moving dislocations
such as forest dislocations [178, 183]. As a result, the
hardening curves beyond the yield stress become quasi-
linear, and the coefficient of strain hardening is greater than
that for the purely dipole hardening [182].

In addition, dislocations of secondary slip systems are
obstacles on which, like on the forest dislocations, the
multiplication of primary dislocations may occur. Conver-
sely, the dislocations of the primary system may serve as
forest dislocations for the secondary dislocations. As a result,
as indicated by experiment [183], their densities are very soon
equalized. This means that, to a certain accuracy, we may
assume that r a

f � rm in Eqns (3.1) and (3.2), which then
become

rm
drm
de
� bÿ1n� �km ÿ kim� rm � kf r3=2m ÿ kar2m ; �3:5�

dri
de
� kie ÿ kdri ; kim � kis � ki ri : �3:6�

These equations must be supplemented by the law of
dislocation hardening because of the interaction of disloca-
tions with one another

s � abmr1=2m : �3:7�

To see howwell the equation of evolution (3.5) agrees with
experiment, we use the relation [184]

s
ds
de
� 1

2
�amb�2 drm

de
; �3:8�

which follows from the law of hardening (3.7). Substituting
Eqn (3.5) into (3.8), and noting that rm / s2, we find the
coefficient of strain hardening y � ds=de as a function of the
dimensionless flow stress �s � s=s1 [176]:

y � ym�Q0�sÿ3 ÿQi�sÿ1 � 1ÿ �s� ; �3:9�
where

ym
m
� 1

2
abkf ; s1 � ambr1=21 ; r1 �

�
kf
ka

�2

;

Q0 � n

bka r21
; Qi � kim ÿ km

ka r1
: �3:10�
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Curves 1 ± 3 in Fig. 2 are plotted from Eqn (3.9) with
different values of parameters Q0 and Qi (see Table), of
which the former accounts for the effects of the density of
Frank ±Read sources, and the latter for those of the
immobilization of dislocations and dislocation sinks on the
shape of y�s� curves and, hence, on the segmentation of the
curves of deformation hardening. We see that the results for
copper crystals, shown earlier in Fig. 1b, are in good
agreement with curve 3 in Fig. 2.

Each term on the right-hand side of Eqn (3.9) is associated
with a distinct hardening stage. Parameter Q0 corresponds to
themicrodeformation stage;Qi, to the first stage; and the next
two terms determine the second and third stages, respectively.
As follows from Figs 1b and 2, the coefficient of strain
hardening at the third stage (the stage of dynamical
recovery) decreases linearly with increasing flow stress [157,
167 ± 174],

y � ym

�
1ÿ s

s1

�
: �3:11�

Relation (3.8) then assumes a purely parabolic form

ys � yms1

�
1ÿ s

s1

�
s
s1

; �3:12�

and describes, according to Eqn (3.8), how the coefficient of
dislocation multiplication changes with the stress (or strain)
at the second and third stages [24, 157 ± 161]:

drm
de
� kf r1=2m ÿ ka rm : �3:13�

Figure 3 shows the experimental strain-hardening curves
for polycrystalline specimens of Al ± 3 at.% Mg at different
temperatures in the range of 77 ± 473 K [160, 161] in the
coordinates

y � y�sÿ s0��
y�sÿ s0�

�
max

; x � sÿ s0
�sÿ s0�max

; �3:14�

which point to good agreement between the parabolic law
y � x�2ÿ x� and the experiment, where s0 is the yield
stress, and

�
y�sÿ s0�

�
max

and �sÿ s0�max correspond to
the tops of the parabolas. Similar agreement between the
law (3.13) and the experiment was observed for the strain-
hardening curves of Ag [160], Al [161], and Ni [159].

To find the explicit form of the strain-hardening curve
s�e�, we have to integrate Eqn (3.9):

��s

0

d�s
Q0�sÿ3 ÿQi�sÿ1 � 1ÿ �s

� e
e1

; e1 � 2

ka
: �3:15�

The results of integration for different values ofQ0 andQi (see
Table) are given in Fig. 4. Depending on the absolute and
relative magnitude of these parameters, the curves s�e� show
the presence (curves 1 and 2) or absence (curve 3) of the first
stage with a low coefficient of strain hardening.

To find the criterion of existence of the first stage of
hardening, we differentiate Eqn (3.9) with respect to �s. As a

Table. Values of the parameters Q0, Qi and g.

Parameter Curve 1 Curve 2 Curve 3

Fig. 2 Fig. 4 Fig. 2 Fig. 4 Fig. 2 Fig. 4

Q0 � 106

Qi � 102

g

0.12
0.12
1.0

0.12
0.12
1.0

0.12
0.5
0.06

1.9
2.25
0.04

1.9
2.25
0.04

7.5
3.56
0.07

0 1
s=s1

2

1.0

y=ym

0.5

1

2

3

Figure 2.Coefficient of strain hardening y vs. the stress s according to Eqn

(3.9) for different values of the parameters Q0, Qi, and g (see Table).

Experimental points for Cu taken from Ref. [156].
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Figure 3. Quantity y�sÿ s0� vs. sÿ s0 in the coordinates of Eqn (3.14).

Experimental points are the values of y�sÿ s0� in the Al ± 3.3 at.% Mg

alloy at various temperatures in the range 77 ± 473 K [160, 161].
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result, we find the stresses s2 and s1 at which the coefficient of
strain hardening attains its maximum y2 (at the second stage)
and minimum y1 (at the first stage) values:

s1;2
s1
�
�
1

2
Qi

�1=2�
1� �1ÿ g�1=2�1=2 ;

g � 12
Q0

Q2
i

� 12nka

b�kim ÿ km�2
: �3:16�

From Eqn (3.16) we see that for the first stage to exist it is
necessary that the processes of sinking and immobilization of
dislocations should dominate over the processes of multi-
plication through the DCS mechanism �kim > km�. These
processes must be of sufficient intensity to ensure that
condition g < 1 is satisfied.

If g5 1, the first stage is absent, and the strain-
hardening curve has two stages (curves 1 in Fig. 4). In
such a case, the stage of microdeformation is immediately
followed by the second stage, associated with the interaction
between dislocations in the intersecting slip systems. The
strain-hardening curve, according to Eqn (3.13), is described

by expression

s � s1

�
1ÿ exp

�
ÿ kae

2

��
; �3:17�

from which it follows that for deformations e5 2=ka we have
s � y2e, where y2=m � abkf=2 � 2:5� 10ÿ3 is the coefficient
of strain hardening at the second (linear) hardening stage.
Good agreement between Eqn (3.17) and the experiment is
clear from the results presented in Figs 2 and 3.

If the processes of multiplication of dislocations through
the DCS mechanism and the accumulation of dislocations
owing to the presence of barriers that prevent dislocations
from leaving the crystal dominate over the processes of
immobilization of dislocations and their escape to sinks
�km > kim�, then the deformation-hardening curve (after the
stage of microdeformation) assumes a parabolic character:

s � s1
�
1ÿ exp�ÿkae�

�1=2
; �3:18�

where s1 � amb�km=ka�1=2. At e5 1=ka, we have s / e1=2,
i.e., a parabolic hardening law, which is characteristic, for
example, of polycrystalline aggregates, in which the free path
of dislocations is limited by the grain size d, and therefore
km � �bd�ÿ1. As a result, we obtain the known Hall ± Petch
law s / dÿ1=2 for the flow stress as a function of the grain size
[185 ± 187].

The sensitivity of strain-hardening curves to the absolute
and relative magnitude of the kinetic coefficients in the
equation of evolution of dislocation density (3.5) also applies
to the coefficient of annihilation of dislocations ka. As shown
in Refs [151, 159, 160], this coefficient is inversely propor-
tional to the stress of lattice friction of dislocations, ka / sÿ1f

[162]. Because of this, everything that facilitates the increase
in the stress of lattice friction must postpone the stage of
dynamical recovery.

We know that in metallic crystals with a body-centered
cubic (bcc) lattice at temperaturesT < 0:1Tm, where Tm is the
melting point, the friction stress increases dramatically at low
temperatures as dislocations move along the Peierls relief.
Because of this, the strain-hardening curves [188, 189] cease to
feature the third stage of hardening, and then the second,
because the multiplication of screw dislocations by the DCS
mechanism is hindered.

3.2 Size, orientational, and surface effects
As is known from experiment (see Refs [190 ± 199] and
literature cited in Ref. [177]), the very existence of the first
stage of hardening and its parameters (yield stress s0,
coefficient of strain hardening y1, length of stage e2 ÿ e1) are
very sensitive to the structural factors and loading conditions
if the free path of dislocations (about 1 mm at the initial stage
of deformation) is comparable to the transverse dimensions
of the crystal under stress. The structural factors are all those
factors that affect the free path of dislocations, and the
loading conditions include all factors that facilitate or hinder
the escape of dislocations from the crystal.

The buildup of dislocations in the crystal (and hence its
hardening) is aided by impurities, inclusion particles, hard
crystal orientations h111i, specially hardened surface layers,
oxide films, and coatings. The plasticization of the crystal and
the appearance of the first stage of hardening are facilitated
by factors such as the reduction of transverse dimensions of
the crystal, soft orientations (e.g., h110i), removal of oxide
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Figure 4. Strain-hardening curves s�e� (a) and their initial portions (a)

according to Eqn (3.15).
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film, chemical or electrolytic dissolution of crystal surface in
the course of deformation, deformation of crystal in high
vacuum.

The equation of evolution of the density of dislocations
(3.5) provides for a quantitative assessment of the effects of
the factors named above on the parameters of the first stage of
hardening [177]. Indeed, as demonstrated in the previous
section, the first stage owes its existence to the predominance
of the processes of immobilization of dislocations and their
escape to sinks (represented in thin crystals by the crystal
surface) over the processes of multiplication and accumula-
tion of dislocations in the crystal. Given this, we can express
the coefficients of accumulation and immobilization of
dislocations as [177]

k 0m �
1

blm
� bm
bLe

; k 0im �
1

blis
� bS
bLe

; �3:19�

where Le is the distance covered by a dislocation in the slip
plane to its egress on the surface; bS and bm are the
coefficients of transparency of the surface for escape of
dislocations from the crystal, and the efficiency of the surface
barrier for the moving dislocations; lm and lis are the free
paths of dislocations in the case of their multiplication by the
DCS mechanism.

Further, we must take into account that, as the cross
section of the crystal becomes smaller, the relative contribu-
tion of the surface dislocation sources with the density nS to
the total density of dislocation sources in the crystal increases
[177]:

n � nV �mSL
ÿ1
e nS ; �3:20�

where nV is the density of bulk Frank ±Read sources, andmS

is the orientation factor. Since Le � med, where me > 1 is the
orientation factor, and d is the thickness of the crystal, the
total density of dislocation sources n increases as the thickness
of the crystal under stress decreases.

Substituting Eqns (3.19) and (3.20) into (3.16), we express
the critical parameter g as a function of the thickness of the
crystal, its orientation, and the conditions of escape of
dislocations to the surface of the crystal [177]:

g�Le� � g1
1� k1lm=Le

�1� k2lm=Le�2
;

k1 � lS
lm

; k2 � bS ÿ bm
bi ÿ 1

; �3:21�

where bi � lm=lis, lS � mSnS=nV is a parameter that accounts
for the relative importance of surface sources in the genera-
tion of dislocations, and g1 is the parameter g in a thick
�Le 4 lm� crystal. At bS > bm, bi > 1, g1 > 1, from Eqn
(3.31) it follows that a reduction of crystal thickness
�Le < lm� will cause the appearance of the first stage of
hardening that is not present in a thick crystal because
g � g1Le=lm < 1. This is actually observed in experiment
[194].

Condition bS > bm at bi > 1 implies that the surface of the
crystal is an efficient sink for dislocations. This efficiency
increases when the crystal is subject to chemical or electrolytic
treatment in the course of deformation [195], or when its
deformation takes place in high vacuum which prevents the
formation of an oxide film [196].

In the case of chemical etching, the parameter bS increases
proportionally to the rate of removal of surface layers uS:
bS � 1� uS=u, where u is the velocity of dislocations [177].
All these processes facilitate the appearance of the first stage
of hardening, that is, plasticize the crystal. Conversely, if the
critical parameter in the initial crystal is g1 < 1, the
formation of a hardened surface layer or coating will
eliminate the first stage of hardening [190 ± 195].

From Eqns (3.5) and (3.19) it follows that the density of
free dislocations in the beginning of the first stage of
hardening is rm0 � n=b�k 0im ÿ k 0m�. In this case, making use
of Eqns (3.19) and (3.20), for the yield stress s0 � ambr1=2m0 as a
function of thickness of crystal d we obtain [177]

s0�Le� � s0�1�
�
1� k1 lm=Le

1� k2 lm=Le

�1=2

; Le � med ; �3:22�

where s0�1� is the yield stress of thick crystal.
From Eqn (3.22) we see that at k1 5 1, k2 > 0 the

reduction of crystal thickness ought to bring down the yield
stress. If jk2j5 1, however, the thinning of the crystal will
raise the yield stress [194]. A similar dependence of s0 on d is
observed when the surface of the crystal is a barrier for the
escape of dislocations �k2 < 0�.

Another consequence of Eqn (3.22) is the dependence of
the yield stress s0 on the orientation of the crystal (orienta-
tional factor me). This circumstance underlies the known
violation of Schmid's law in thin crystals and foils [197 ±
199], which states that the active slip plane (system) is the
plane with the highest Schmid factor [35], that is, with the
maximum value of tangential stresses. As indicated by
experiment, however, the operating slip plane in thin crystals
is not that plane, but rather the plane with the least free path
of edge dislocations to the surface of the crystalLe [197], since
this ensures lesser dislocation hardening as compared with the
plane that has a higher tangential stress and a longer free path
of dislocations Le.

Indeed, the orientational factor in Eqn (3.22) is
me � 1= sinj [197], where j is the angle between the axis of
deformation and the slip plane; therefore, at k1 5 1 and
k2 > 0 the deviation of angle j down from, for example, 45�

will reduce the path of dislocation to the surface of crystal Le.
According to Eqn (3.22), this will bring down the yield stress
of the crystal, that is, facilitate the start of its plastic flow (or
rather the continuation of plastic flow following the stage of
microdeformation).

The effects of these factors on other parameters of the first
stage of deformation were analyzed in Refs [176, 177]. As
regards the manifestation of these factors at the second and
third segments of the deformation-hardening curve, their
effects are insignificant, because the free path lengths of
dislocations are much reduced at the second and third stages
of hardening.

These results of the analysis of strain-hardening curves
based on the kinetic equations (2.15) and (2.16) indicate
that these equations fit in well with the experiment, and
account for such fundamental properties of hardening
curves as their multistage nature and sensitivity toward
the structure of crystals and the conditions of deformation.
In addition, on the basis of our analysis we may conclude
that the strain-hardening curve is not purely static or quasi-
static, but reflects the kinetic processes that take place in
the dislocation ensemble of the crystal in the course of its
deformation.
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4. Slip lines and bands

One of the characteristic features of plastic deformation of
crystals is its localization in the form of slip lines and bands
[34 ± 42, 200 ± 209]. The discrete nature of slipping and its
evolution along distinct crystallographic planes is not surpris-
ing by itself, and can be consistently explained within the
framework of the dislocation mechanism.

What is surprising and calls for explanation is the
emergence Ð in the course of plastic deformation of the
crystal Ð of a hierarchic and spatially ordered system (stack)
of slip lines [38, 40, 200, 201, 209] that points to the
cooperative (fractal [206, 207], self-similar [208]) nature of
the development of plastic deformation in the direction
transverse to the principal slip plane of dislocations.

Figure 5 shows the distribution of slip lines with respect to
distancesL between them obtained with the replica technique
at the end of the first stage of hardening in a crystal of Cu ±
8 at.%Mnalloy [209]. Similar histogramswere obtained with
different magnifications for Ni3Fe alloy using optical and
electron (replica technique) microscopy [208]. In Fig. 5 we see
that the distances between the lines group with a certain
probability around the mean value �L. This mean value does
not remain constant and depends on the state of the crystal
[208, 209] and strain (stress).

Figure 6 illustrates the mean distance between slip lines in
copper single crystals stressed at 4.2 K as a function of stress
that was variedwithin broad limits (the first and second stages
of the copper hardening curve [201]). A similar result was
reported in Ref. [202] for aluminum single crystals stretched
at room temperature. The results can be approximated by the
expression

s � K1

�
mb
�L

�m

; �4:1�

where K1 � 1:2, m � 1:18 (Cu), m � 1:0 (Al). Since
s � ambr1=2, at m � 1 we find that the mean distance
between slip lines �L as a function of the mean density of

dislocations r is

�L � K2rÿ1=2 ; K2 � K1=a : �4:2�

Relations similar to Eqns (4.1) and (4.2) were found earlier for
the cell size in the cellular dislocation structure (see Section 5).

Currently several possible mechanisms of formation of
spatially ordered system of slip lines are being discussed.
According to Ref. [210], slip lines result from consecutive
activation of the dislocation sources closest to the slip plane in
question by the fields of internal stress generated by moving
groups of dislocations of the same sign.

Obviously, the mean distance between the slip lines �L in
this case must depend on the characteristic scale of the field of
internal stress, and the distribution of slip lines with respect to
distances must be determined by the distribution of disloca-
tion sources. Since, as follows from experiment [200, 208,
209], the mean distance �L depending on the scale of
observation may vary widely (from 10 nm to 100 mm), the
density of dislocation sources at, for instance, �L � 10 ±
100 nm, in the form of Frank's grid must be of the order of
�Lÿ3, and the density of growth dislocations is r0 � �Lÿ2 �
1010ÿ1012 cmÿ2. This density is several orders of magnitude
greater than the density of growth dislocations in real crystals
(104 ± 108 cmÿ2) [150, 183].

According to Refs [204, 205], the relay mechanism of
formation of slip lines is due to the consecutive activation of
the surface dislocation sources by the fields of internal stress
from the `outcropping' groups of like dislocations, and the
resulting step on the surface which is a geometric concen-
trator of stress. This hypothesis draws similar comments to
the previous one. Observe also that this mechanism is not
universal, because the surface sources may be blocked when
the surface layer is hardened in one way or another, and then,
as noted in Ref. [204], plastic deformation starts with the
activation of the bulk dislocation sources.

4.1 Correlation effects
In Ref. [211], the loss of spatial stability by the dislocation
ensemble and the localization of deformation as a system of
slip lines are associated with the formation of steady
inhomogeneous fluctuations of dislocation density owing to
the correlation effect in the spatial arrangement of disloca-
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Figure 5. Histogram of distribution of distances L between slip lines in

single crystals of Cu ± 8 at.%Mn alloy at the end of the first stage of

hardening [209].
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Figure 6. Inverse mean distance between slip lines �Lÿ1 in single crystals of

copper vs. stress s [201].
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tions of one sign with respect to the dislocations of the other
sign. The mechanism of shielding of the elastic field of
dislocation by the elastic fields of dislocations of the opposite
sign, resulting in the periodical clustering of dislocations, was
used earlier for explaining the formation of cellular disloca-
tion structure in the crystal [84]. It was further developed in
Refs [139, 140, 211]. Given below are the results of calcula-
tions as relevant to our discussion.

The inclusion of the correlation effect when averaging the
equations of motion of dislocations (2.4) gives rise to an
additional correlation stress s cor

ik (see Appendix II):

ni�s ext
ik � s in

ik � s cor
ik � bk � bs �f� ;

s �f� � s��u;T� � sf � sm�r� ; �4:3�

where

s cor
ik �r; t� � ÿ

�
Aiksp�r 0 ÿ r� bkns r�r 0; t� g�r 0 ÿ r; t� dr 0 ; �4:4�

g�r 0 ÿ r; t� is the pair correlation function.
For illustrative purposes, we consider a two-dimensional

model ensemble consisting of parallel screw dislocations of
opposite sign in equal proportion [140]. The presence of
correlation stress in the equation of motion (4.3) gives rise to
the correlation drift flow j cor � r u�ŝ cor� in Eqn (2.15) in
addition to the flows of dislocations created by the external
and internal stresses. For a relatively low correlation stress we
have

j corp � ruM cor
pq s cor

qk bk ; M cor
pq �

q ln u
b qs cor

pq

: �4:5�

Expanding r�r 0; t� in the integrand in Eqn (4.4) in a
Taylor series with respect to r 0 ÿ r and carrying out integra-
tion, we obtain for the ensemble in question the following
expression for the correlation flux:

� corp � r�r; t�uM cor
pq �A1 � A2H2 � . . .�Hq r ; �4:6�

where

A1�t� � ÿmb2
�1
0

r g�r; t� dr ;

A2�t� � ÿ mb2

6

�1
0

r3 g�r; t� dr ; r � jr 0 ÿ rj : �4:7�

The solution of the stationary kinetic equation for the
correlation function is [140]

g
ÿjr 0 ÿ rj� � ÿ mb2

2pE
K0

�jr 0 ÿ rj
rD

�
; �4:8�

where K0�x� is the Bessel function of the imaginary argument
of zero order; rD � �E=mb2�1=2rÿ1=2 is the radius of `Debye
atmosphere' of dislocations of opposite sign; and E is a
certain mechanical energy (the counterpart of the kinetic
`temperature' of the dislocation ensemble), which defines the
finite value of the correlation radius of dislocations. As a
result, we find that in the expression for the correlation flux
(4.7) we have

A1 � mb2

2pr
; A2 � E

3pr2
: �4:9�

Substitution of Eqn (4.7) into the kinetic equations for the
densities of positive and negative dislocations of the type of
(2.15) and the appropriate linear analysis of stability of the
system of equations with respect to inhomogeneous fluctua-
tions of the density of dislocations reveal [211] that this system
of equations becomes unstable when the fluctuations reach
their critical amplitudes of

Lcr � 2p
�
2A2

A1

�1=2

� K2rÿ1=2 ; K2 � 4p
�

E

3mb2

�1=2

: �4:10�

In this way, the correlation interaction of dislocations in
principle warrants the emergence of the spatially modulated
clustering of dislocations in crystal with the characteristic
length L/rÿ1=2 / sÿ1, in agreement with experiment (see
Eqn (4.1) and Fig. 6). According to experiment, the constant
K2 � K1=amust be of the order of 2.4 ± 6.0, depending on the
magnitude of the constant of interaction between dislocations
a: a � 0:2 for Taylor's interaction, and a � 0:5 in the case of
interaction with forest dislocations.

The relation between the mechanical energy of disloca-
tions and the energy of their interaction E=mb2 � 0:1ÿ0:7 is
then such that the correlation radius is rD 4 lr, where
lr � rÿ1=2 is the mean distance between dislocations in the
ensemble. This means that even if the correlation effect does
exist, it is not strong enough to account for the formation of
slip lines in crystal. On top of that, like the relay mechanisms
described above [204, 205, 210], the correlation mechanism is
strictly deterministic and does not explain the existence of a
multilevel and multiscale system of slip lines [200], which is
self-similar [208] and suggests a branching fractal mechanism
of development of plastic deformation in crystal.

These features are accounted for by the mechanism of
multiplication of dislocations through double cross slip of
screw dislocations. In the first place, this mechanism is
essentially stochastic, because the ejection of a dislocation
segment into the adjacent parallel plane is a random event [see
Eqn (2.14)].

Second, some of these events are accompanied by the
formation of Frank ±Read sources, which generate disloca-
tions and give rise to new slip lines. In turn, dislocations in slip
lines may form new slip lines through the DCS mechanism.
This means that the process of formation of slip lines has a
branching (chain) multilevel nature. It is based on the same
elementary act (pattern) Ð the ejection of a dislocation
segment into the adjacent slip plane, giving rise to a slip line.

Third, the distance of ejection of a dislocation segment
into the adjacent slip plane (2.13), which gives rise to a new
slip line, decreases with increasing stress: h0 / sÿ1, which
gives at least a qualitative explanation to the observed
decrease in the distance between slip lines as the plastic
deformation develops (see Fig. 6).

4.2 Double cross slip and equations
of evolution of dislocation density
The above equations of evolution of dislocation density (2.15)
and (2.16) assume that generation of dislocations from the
sources and multiplication of dislocations occur uniformly
throughout the crystal. In this section we are going to take
into consideration the stochastic and integral (chain) char-
acter of multiplication of dislocations by the DCS mechan-
ism.

The elementary act of double cross slip of a screw
segment of dislocations occurs with a certain probability
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(2.14). Its result depends on the height h of ejection of the
screw segment of dislocation into the parallel slip plane. If
h < h0, then an edge dipole is formed; if h > h0, the Frank ±
Read dislocation source is formed that generates a finite
number p of dislocation loops, whose screw portions take
part in the acts of DCS and produce new sources of
dislocations. The stochastic and integral nature of the
process of multiplication of dislocations through the DCS
mechanism relates not only to the coordinate y in the
direction transverse to the slip plane, but also to the
coordinate x in the direction of motion of screw portions
of the loops.

Given this, the equations of evolution of the density of
dislocations (2.15) and (2.16) assume the form

qrm
qt
� H � �urm� � n�r�u� plÿ1s

�1
x

Q�x 0 ÿ x� dx 0

�
�1
y�h0

P�y 0 ÿ y� u�rm� rm�x 0; y 0; t� dy 0

ÿ �lÿ1is � hiri�urm � df r
1=2
f urm ÿ haur2m ; �4:11�

qri
qt
� lÿ1s

�1
x

Q�x 0 ÿ x� dx 0

�
�y�h0
y

P�y 0 ÿ y� u�rm� rm�x 0; y 0; t� dy 0 ÿ hduri rm ;

�4:12�

where

Q�x 0 ÿ x� � lÿ1s exp

�
ÿ jx

0 ÿ xj
ls

�
;

P�y 0 ÿ y� � hÿ1c exp

�
ÿ jy

0 ÿ yj
hc

�
; �4:13�

Q�x 0 ÿ x� is the probability that the screw segment of the
dislocation loop will cover the distance x 0 ÿ x > ls after the
DCS act; and ls is the path of screw segments to the
appropriate obstacles. In writing these equations, we have
taken into account the fact that the velocity of dislocations u,
owing to deformation hardening (3.7), depends on the density
of dislocations rm�x; y; t�.

Equations (4.11) and (4.12) are integrodifferential equa-
tions. For analyzing their stability with respect to inhomoge-
neous density fluctuations, it will be convenient to convert
them to a purely differential form, by expanding the density of
dislocations rm�x 0; y 0; t� [or, more precisely, the flow of
dislocations u�rm� rm] into the double Taylor series with
respect to variables x 0 ÿ x, y 0 ÿ y:

u�rm� rm�x 0; y 0; t�
� u
�
rm�x; y; t� � �1ÿM�R�x 0 ÿ x; y 0 ÿ y; t�� ;

R�x 0 ÿ x; y 0 ÿ y; t�

�
X
n�1

1

n!

�
�x 0 ÿ x� q

qx
� �y 0 ÿ y� q

qy

�n
rm�x; y; t� : �4:14�

Substituting Eqn (4.14) into Eqns (4.11) and (4.12) and
calculating the integrals, with due account for the symmetry

and positivity of the integrands, we obtain

qrm
qt
� H � �urm� � n�r�u� �lÿ1m ÿ lÿ1is ÿ hi ri�urm

� df r
1=2
f urm ÿ haur2m �

Xn
k�0

D
�m�
�nÿk�x; ky

qnrm
qxk qynÿk ; �4:15�

qri
qt
� lÿ1ie urm ÿ hduri rm �

Xn
k�0

D
�i�
�nÿk�x; ky

qnrm
qxk qynÿk : �4:16�

Here,

lÿ1m � plÿ1s exp

�
ÿ h0
hc

�
; lÿ1ie � lÿ1s

�
1ÿ exp

�
ÿ h0
hc

��
;

M � ÿ q ln u
q ln rm

� Vsm
2kT

; �4:17�

and V � ÿdH=ds� is the activation volume.
The nonzero diffusion coefficientsD �m� at even powers of

space derivatives in Eqn (4.15) up to n � 4 (dropping the
subscript m) are, respectively,

D2x � p�1ÿM�lsu ; D2y � 1

2
p�1ÿM� h

2
0

ls
uj2�q� ;

D4x � l2sD2x ; D4y � 1

24
p�1ÿM� h

2
0

ls
uj4�q� ;

D2x; 2y � l2sD2y ; j2�q� � �1� 2q� 2q2� exp
�
ÿ 1

q

�
;

j4�q� � �1� 4q� 12q2 � 24q3 � 24q4� exp
�
ÿ 1

q

�
; q � hc

h0
:

�4:18�

In a similar way, one can find coefficients D �i� in Eqn (4.16).
The estimates indicate, however, that D �i�5D �m�, and their
role in the development of instabilities is not important.
Because of this, the corresponding terms in Eqn (4.16) may
be disregarded.

4.3 Slip lines
If in Eqn (4.15) and (4.16) the bulk density of dislocation
sources n is large enough, and they are evenly distributed
throughout the crystal, then the equations admit stationary
homogeneous solutions

ri0 � �hi rm0�ÿ1
�
n� �lÿ1m ÿ lÿ1is � df r

1=2
f �rm0 ÿ ha r2m0

�
;

�4:19�
ri0 � �liehd�ÿ1 : �4:20�

Curve 1 in Fig. 7 schematically depicts function (4.19)
when rf � rm (the second and third stages of hardening). The
horizontal line 2 in this diagram corresponds to Eqn (4.20).
We see that this system has three solutions. One of them
(point a in Fig. 7) falls within the first stage of hardening,
another (point b) is near the beginning of the second stage,
and the third (point c) belongs to the third stage of the curve
of hardening (cf. Fig. 1).

Let us investigate the stability of equations (4.15) and
(4.16) in the neighborhood of point a with respect to
fluctuations of density of the form dr / exp�o� iqx � iqy�.
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At point a we have

rm0 �
nlm
bi ÿ 1

; ri0 � �hdlie�ÿ1 ; bi �
lm
lis
� hi
hd

lm
lie

> 1 :

�4:21�

Linear analysis indicates that the values of wave vectors
corresponding to the criteria of instability of fluctuations

qo
qqx
� 0 ;

qo
qqy
� 0 ; o�qx; qy�5 0 ; �4:22�

are

q cr
x �

�
D2x

2D4x

�1=2

; q cr
y �

�
D2y

2D4y

�1=2

: �4:23�

For the critical amplitudes of fluctuations L cr
x; y � 2pqÿ1x; y, and

the critical increment, we find, respectively,

L cr
x � 2

���
2
p

pls ; L cr
y �

2p���
6
p

�
j4�q�
j2�q�

�1=2
q�1

h0 � 9;2h0 ; �4:24�

o�q cr
x ; q

cr
y � �

nlm
bi ÿ 1

�hihd�1=2u > 0 :

The magnitude of L cr
y was estimated under the assumption

that the quantity q � hc=h0 remains more or less the same in
the course of deformation. According to Ref. [148], in LiF
crystals we have hc=h0 � 1. This is because the mean distance
of cross slip �h � hc decreases with increasing stress.

From the estimate for L cr
y it follows that the amplitude of

critical fluctuations is equal to several h0 distances required
for the DCS act to give rise to a Frank ±Read source, which is
an indication of the cooperative nature of the development of
instability. Taking into account the dependence of distance h0
on stress (2.13), we find the amplitude of critical fluctuations
of the dislocation density as a function of stress:

L cr
y � K1

mb
sÿ sf

; K1 � 1

4
���
6
p �1ÿ nP�

�
j4�q�
j2�q�

�1=2
q�1
� 0:5 :

�4:25�

Now, let us consider the solution of Eqns (4.15) and (4.16)
near point a, retaining in Eqn (4.15) only the first diffusional
term with respect to coordinate y. We have the following
equations:

qrm
qt
� H � �urm� � nu� �lÿ1m ÿ lÿ1is ÿ hi ri�urm

� �1ÿM�lyu q2rm
qy2

; �4:26�

qrm
qt
� �lÿ1ie ÿ hdri�urm ; ly � 1

2
p
h20
ls

j2�q� : �4:27�

Near point a we may set qrm=qt � qri=qt � 0. Then, the
solution of Eqn (4.26) with zero drift flow is

rm�y� � rm0

�
1� cos 2p

y

Ly

�
;

Ly � 2p
�
Mÿ 1

bi ÿ 1

�1=2
�lmly�1=2 : �4:28�

Solution (4.28) describes a dislocation structure spatially
modulated in the direction transverse to the slip plane of
dislocations, with the period Ly / h0 / sÿ1:

Ly � K1
mb

sÿ sf
;

K1 � 1

4�1ÿ nP�
�
Mÿ 1

bi ÿ 1

�1=2�
1

2
exp

�
1

q

�
j2�q�

�1=2
: �4:29�

The existence of this structure requires that the relative
coefficient of immobilization of dislocations bi and the
coefficient M that accounts for the effect of strain hardening
on the velocity of dislocations should be greater than unity.
For example, at room temperature in copper single crystals at
the first stage of hardening, the coefficient of inversion of the
dislocation flux is M �M1 � 20 [113]. Setting bi � 2, q � 1,
nP � 0:25 in Eqn (4.29), we obtain an estimate K1 � 2:3,
which in order of magnitude fits in with the experimental
value of K1 � 1:2. The mean distance between slip lines is 4.6
times greater than the amplitude of critical fluctuations of
density (4.25).

We see that there are several levels (scales) of slipping. The
smallest is the level of elementary slip associatedwith theDCS
mechanism, h0 � 10ÿ102 nm. Next follows the level of
critical fluctuations of dislocation density, L cr

y � 10h0 �
0:1ÿ1 mm. The third level is represented by slip lines
observable with an optical microscope, Ly � 50h0 �
0:5ÿ5 mm. At each level, the scale depends on the stress as
L / sÿ1, which means that the deformation structures are
self-similar [208]. Accordingly, the coefficients K1 in Eqns
(2.13), (4.25) and (4.29) are scaling coefficients. As follows
fromEqns (4.26) and (4.27), the spatially periodicmodulation
of dislocation density is caused by the competing processes of
generation of dislocations by sources, their immobilization in
the form of dipoles, and inversion of diffusion flows because
of strain hardening.

If the formation of slip lines is associated with the process
of double cross slip of screw dislocations, then their distribu-
tion with respect to distances L (see Fig. 5) must be described
by a function of the type of Eqn (2.14):

dN

dL
� Lÿ1c exp

�
ÿ L
Lc

�
: �4:30�
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ri0

a b c
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1

Figure 7. Curves of local linkage of densities of mobile rm0 and immobile

ri0 dislocations according to Eqns (4.19) and (4.20).
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The broad spread of experimental points and the bimodal
(with maxima near 100 and 375 nm) character of histograms
in Fig. 5 for the Cu ±Mn alloy make it difficult to compare
Eqn (4.30) with the experimental findings. The spread of
experimental points can be reduced if we consider not the
differential distribution (4.30), but rather the integral dis-
tribution of slip lines with respect to distances L:

N�L� � N0 exp

�
ÿ L
Lc

�
; �4:31�

where N0 is the total number of slip lines.
The result of application of Eqn (4.31) to the unimodal

histogram of distribution of slip lines in single crystals of
Cu ± 10 at.% Al [209] is shown in Fig. 8. We see that for this
alloy the distribution of slip lines with respect to distances is
well described by Eqn (4.31) with Lc � 65 nm. The exception
is the region of the lowest values of L (L < 60 nm), where the
experimental results deviate from Eqns (4.30) and (4.31). This
may be caused by the inadequate sensitivity of the replica
technique at L < 60 nm, or by the annihilation of screw
dipoles that are formed in the act of DCS but do not have
enough time to produce an active Frank ±Read source.

The annihilation mechanism is borne out by the fact that
the deviation from distributions (4.30) and (4.31) starts earlier
for the Cu ±Mn alloy (at L � 100 nm; see Fig. 5). The energy
of stacking fault for the Cu ±Mn alloy is four times as large as
that for the Cu ±Al alloy [209], which greatly increases the
probability of dislocation annihilation [113, 162 ± 163].

It should be noted that application of scanning tunneling
microscopy to the study of structure of slip lines on the
surface of deformed crystals [209, 212 ± 214] opens up the
scale of 1 to 10 nm. The first results of these studies point to

the discrete nature of deformation not only in the direction
transverse to the slip plane of dislocations, but also in the slip
planes themselves [213].

4.4 Slip bands
Another characteristic feature of the initial stage of deforma-
tion of crystals is the formation and broadening of slip bands
[39 ± 42, 148, 200]. The steady movement of the front of
multiplication of dislocations points to the concerted nature
of the development of plastic deformation in the direction
transverse to the slip plane of dislocations. The propagation
of the front may be affected by the above mechanisms of
formation of slip lines [200, 203 ± 205] as a result of the action
of internal stresses from pileups of dislocations of the same
sign or the concentrator of stress in the form of a step on the
surface of the crystal at the outcrop of the slip line. The action
of these stresses may be associated with the drift flow of
dislocations jy � rmuy in the direction transverse to the slip
plane of dislocations.

Given this circumstance, equations (4.26) and (4.27)
assume the form

qrm
qt
� uy

qrm
qy
� �Mÿ 1�lyu q2rm

qy2
� nuÿ �bi ÿ 1�lÿ1m urm ;

qri
qt
� 0 :

Introducing in the notation of Eqn (4.21) the dimensionless
density of dislocations r � rm=rm0 and the stationary
coordinate Z � �yÿUyt�=Ly, where Uy is the rate of broad-
ening of the band, we obtain the equation

d2r
dZ 2

ÿ o
dr
dZ
� 1ÿ r ; o � Uy ÿ uy

�bi ÿ 1�u
Lm

Ly
;

Ly �
�
Mÿ 1

bi ÿ 1

�1=2

�lmly�1=2 ; �4:32�

which admits a solution of the form (curve 1 in Fig. 9)

rm�Z� � rm0

n
1ÿ exp

�
g�jZj ÿ Z0�

�o
; jZj < Z0 �4:33�
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Figure 8.Curve of distribution of slip lines with respect to distances greater

than L in single crystals of alloy Cu ± 10 at.% Al [209].
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Figure 9. Distribution of dislocation density (1) and the rate of plastic

deformation (2) across the width of the slip band.
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under the conditions

g2 ÿ og� 1 � 0 ; g1;2 � o
2
�

��������������
o2

4
ÿ 1

r
: �4:34�

For finding the parameter g, we have the equation of
balance for the rate of plastic deformation in crystal where a
two-way broadening of N slip bands takes place [148]:

_e0l0
2N
� Uyg ; �4:35�

where g � brm0lm is the deformation in the band [113], _e0 is
the rate of plastic deformation set by the loading device, and l0
is the length of crystal. In writing the equation of balance
(4.35), we have noted that the rate of plastic deformation is
the highest at the edges of the band because of strain
hardening.

Curve 2 in Fig. 9 illustrates the distribution of the local
deformation rate across the band _e�Z� � b rm�Z� u�rm�,
where _emax is the maximum rate of deformation in the
band, corresponding to the condition M � 1 [see Eqn
(4.17)]. The calculation is based on the Arrhenius expres-
sion for the velocity of dislocations (2.5) with H�s�� �
H0

�
1ÿ �s�=sc�1=2

�2 [24], s� � sÿ sf ÿ ambr1=2;m , and g � 1,
Z0 � 10. For LiF crystals, the following values of parameters
were used: H0=kT � 40, sc � 8sf, s � 5sf, sf � 1 MPa,
a � 0:2, b � 0:3 nm, m � 4:3� 104 MPa.

According to Eqn (4.34), the necessary condition for the
formation and broadening of slip bands iso > 2.Making use
of the notation of (4.32) and equation of balance (4.35), it may
be represented as

_e0l0
2Nnbl2mu

>
uy

u
� 2

ly
lm

: �4:36�

From condition (4.36) it follows that the formation and
broadening of slip bands requires that their number N in the
crystal should be not large, and the bulk density of dislocation
sources n and the mobility of dislocations u be small. It is
known that slip bands (LuÈ ders bands) are formed in those
crystals where, since the dislocations are strongly pinned by
impurity atmospheres, or the surface quality is high, or the
volume crystal is small (metallic `whiskers' [39]), the number
of dislocation sources and surface concentrators of stressN in
crystal is not sufficient to warrant its uniform plastic
deformation.

At the other extreme Ð when the bulk density of
dislocation sources n and the number of surface concentra-
tors of stress N in the crystal are large Ð condition (4.34) is
not met �o > 2�, and solution (4.33) of equation (4.26) makes
way for solution (4.28). In other words, in place of one or a
few slip bands, there are many of them.

Another circumstance that ought to be mentioned is the
possibility of change (increase) of the number of slip bands in
the course of plastic deformation because of the formation of
new bands or the multiplication (branching) of existing
bands.

The equation of balance for the rate of plastic deforma-
tion of crystal (4.35) can be written in the form

_e0 � 2N_emax
Dw
l0

; �4:37�

where _emax and Dw are the rate of plastic deformation and the
width of the region of localization of plastic deformation at
the edges of the slip band (curve 2 in Fig. 9, respectively).
When _emax is not large enough, or the region of localization of
plastic deformation Dw is too narrow, the balance of
deformation rates (4.37) may be achieved through increasing
the number of slip bands N.

The processes of branching were observed with the
propagation of LuÈ ders bands [63] and Portevin ±Le Châtelier
bands [215], and also in inhomogeneously hardened or
irradiated (layered) LiF crystals, when the slip bands pass
from nonhardened to hardened (by doping or irradiation)
crystal layers [216, 217]. The mechanism of branching of slip
bands in layered crystals was theoretically treated in
Ref. [218].

4.5 Annihilation channels
Bombardment of metallic crystals with neutrons or quench-
ing from submelting temperatures produces a large number
(1015 ± 1017 cmÿ3) of vacancy and interstitial loops [57, 58].
Plastic deformation of irradiated or quenched crystals has
special features associated not only with the hardening effects
of radiation and quenching defects [219, 220], but also with
the unsteady and nonuniform development of plastic defor-
mation in such crystals.

Curve 2 in Fig. 10a schematically illustrates the stress ±
strain diagram for an irradiated or quenched crystal next to a
conventional three-stage strain hardening curve 1 of well
annealed metal. Plastic deformation of radiation-hardened
or quenched crystals develops unevenly within the crystal as a
LuÈ ders front with small load jumps in the yield plateau
(section ab in curve 2). Load jumps are caused by the
formation of coarse slip lines in the crystal with considerable
local shifts (1 ± 10) [57, 58, 221], which point to strong
localization of deformation.

Transmission electronmicroscopic studies of deformation
of preirradiated single crystals of copper [222, 223], and
quenched aluminum crystals [224] reveal that the formation
of coarse slip lines is associated with the formation of
numerous defect-free channels (about 0.1 to 0.5 mm wide
separated by 1 to 10 mm) in the defect structure of irradiated
or quenched metals.

Figure 10b schematically shows the system of defect-free
annihilation channels and their characteristic features. The
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Figure 10. Stress ± strain curves for annealed (1) and irradiated (2) crystals

(a), and defect-free channels A1, A2, and A3 in the defect structure of

irradiated crystals after plastic deformation (b).
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channels arrange along the slip planes, and can penetrate
through the crystal (channels of type A1). In some cases they
have a dead end (channels of type A2), or branch out
(channels of type A3). The existence of channels of types A2

and A3 is an indication of the relay mechanism of their
formation. Such defect-free channels were found in many
irradiated (Cu [57], Mo [225 ± 227], Nb [228], Ni [229, 230], a-
Fe [231, 232]) and quenched (Al [233], Au [234 ± 236]) metallic
crystals.

Another case of strong localization of strain in the shape
of coarse slip lines with the formation of annihilation
(dislocation-free) channels was observed in Refs [237 ± 240]
with plastic deformation of single-crystalline and polycrystal-
line molybdenum specimens at T > 0:2Tm following prede-
formation at T < 0:1Tm. It was found that the flow stress of
crystals predeformed at low temperature falls steadily after
the start of flow; the stress ± strain diagram, like in the case of
irradiated or quenched specimens, shows small load jumps
and coarse slip lines. When such crystals are strained further,
the load jumps disappear, and the strain-hardening curve, like
in the case of irradiated or quenched specimens (curve 1 in
Fig. 10a), resumes its normal shape, typical of a given
temperature of deformation.

Formation of dislocation-free channels in Mo was also
observed in the experiments on fatigue [240, 241], electric
spark erosion [242 ± 244], and plastic deformation of Mo at
the helium temperature of 4.2 K [240, 245]. In the latter two
cases the formation of channels is due to the strong heating of
regions of localization of deformation (slip lines) because of
the dissipative processes that accompany electric spark
erosion of metal and plastic deformation of crystals at low
temperatures [246, 247].

The total or almost total absence of defects such as
vacancy and interstitial loops and dislocations (in the case of
molybdenum) in channels indicates that their formation is
associated with the process of annihilation of dislocations
that takes place at relatively low homological temperatures
�0:1ÿ0:3�Tm. Since it is only the screw components of
dislocations that can annihilate at these temperatures,
several mechanisms of conversion of vacancy and interstitial
loops into conventional glissile dislocations were proposedÐ
for example, through sweeping the loops by moving disloca-
tions with the formation of jogs and kinks [248 ± 250], or
through the destruction of prismatic loops and sessile
dislocation dipoles by the stress fields produced by the
moving flat groups of dislocations of the same sign [251 ±
253].

These studies did not touch upon the kinetic aspect of the
problem, or the fact that the formation of a course slip line
gives rise not to isolated defect-free or dislocation-free
channels, but rather a system of such, with elements of self-
organization. The latter is confirmed by the analysis [254, 255]
of the published electron microscopic images of channels
(Fig. 11). The diagram in Fig. 11a shows correlation between
the width of channels DLa and the mean distance between
themL for a number of irradiated (Cu [223, 256], filled circles;
Nb [228], empty circles; Ni [229], crosses) and quenched (Al
[233], empty square; Au [234], empty triangle) metals. The
experimental points group around a straight line with a slope
of DLa=L � 0:1.

Figure 11b shows a similar correlation for the width of
dislocation-free channels in single-crystal and polycrystalline
Mo specimens. The filled circles in this diagram show the
relationship between the width of channels and distance

between them in the experiments on mechanical fatigue of
Mo at a frequency of 36Hz and temperature 293K [240, 241];
the empty circles show the same relation in the case of plastic
deformation of polycrystalline Mo at 493 K following
predeformation at 293 K [239]. We see that these points
group around the straight line 1 with a slope DLa=L � 0:5.
The filled and empty triangles in Fig. 11b mark the results for
dislocation-free channels in single-crystal and polycrystalline
Mo specimens subjected to plastic deformation at 378 K after
predeformation at 173 K [238]. In this case, the experimental
points group around the straight line 2 with a slope
DLa=L � 0:2.

From the arguments developed above it follows that the
analysis of the formation of the system of channels must be
based on the equations of dislocation kinetics taking due
account of the fact that, after conversion of radiation and
quenching defects into glissile dislocations, they further
evolve in the conventional manner and take part in all
processes that determine the evolution of the dislocation
ensemble, for example, the process of double cross slip of
screw dislocations.

The role of DCS in the formation of channels is confirmed
by such evidence as the absence of annihilation channels in
radiation damaged and subsequently deformed Cu ± 8 at.%
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Figure 11. Correlation between the width DLa of defect-free (a) and

dislocation-free (b) channels and the distance between them [254, 255].
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Al alloy, which has a low energy of stacking faults as
compared with pure copper, or the presence of branching
channels of type A3 (Fig. 10b) in the defect structure of
irradiated metals [232, 227], and in Mo predeformed at low
temperature [237 ± 240].

Before presenting the results of quantitative analysis of
the mechanism of formation of annihilation channels based
on the equations of evolution of dislocation density, let us
make yet another remark concerning the initial defect
structure of crystals that have been irradiated, quenched, or
deformed at a low temperature. With the density of prismatic
loops N0 � 1015ÿ1016 cmÿ3 and the average size
2R0 � 10 nm, the dislocation density after conversion into
glissile dislocations is r0 � 2pR0N0 � �0:3ÿ3� � 1010 cmÿ2.
This density is much greater than the density of dislocations
108 cmÿ2 typical of the initial stage of deformation of
annealed crystals, and is close to the density of dislocations
at the third stage of hardening.

A similar situation is observed with molybdenum Ð a
metal with the bcc lattice. In the case of plastic deformation at
temperatures T < 0:1Tm in metals with the bcc lattice, owing
to the high stress of lattice friction of dislocations (Peierls
stress), a uniform dislocation structure is formed that consists
mainly of screw dislocations [46, 240, 259]. Subsequent
deformation of Mo at a temperature T > 0:15Tm leads to
annihilation of screw dislocations due to reduction of the
stress of lattice friction of dislocations. As indicated by
experiment, the annihilation decay of the initial defect
structure `overloaded' with dislocations in both cases occurs
unevenly within the crystal, with the formation of defect-free
or dislocation-free annihilation channels.

With due account for the convective (relay) mechanism of
propagation of the front of annihilation of dislocations along
the channels at the velocity ux, we can write the equation of
evolution of dislocation density in the form [254, 255, 260 ±
262]:

qr
qt
� ux

qr
qx
� �Mÿ 1�lyu q2r

qy2

� n0uÿ lÿ1m �bi ÿ 1�urÿ haur2 : �4:38�
Because of the nonlinear term on the right-hand side of Eqn
(4.38), the variables in the directions of the x and y axes (Fig.
10b) cannot be separated. Therefore, we consider an approx-
imate solution of Eqn (4.38) under the assumption that the
width of channels and the distance between them are
determined primarily by the diffusion component of the flux
of dislocations in the direction transverse to the slip plane of
dislocations. (The motion of the front of annihilation of
dislocations along the channel is discussed in Refs [260, 261].)

Introducing the dimensionless variables and parameters

c � r
r0
; Y � y

L0
; L0 �

�
3�Mÿ 1�ly
2bkar0

�1=2
;

c0 �
3n0

bkar20
; cm �

3�bi ÿ 1�
2bkalm r0

> 0 ; �4:39�

for the stationary case, we have the equation

q2c
qY 2

� 1

2
c0 ÿ cmcÿ

3

2
c2 : �4:40�

Here, r0 � 2pR0N0 is the initial density of dislocations as
defined earlier, confined in the radiation or quenching

defects; ka � ha=b is the coefficient of annihilation of screw
dislocations.

Assuming the defects to be evenly distributed at the start
of plastic deformation

qN
qy

����
N�N0

� 0 ;
qc
qY

����
c�1
� 0 ; �4:41�

after integrating Eqn (4.40) once, we obtain�
qc
qY

�2

�W�c�

� �1ÿ c���1� cm ÿ c0� � �1� cm�c� c2
�
: �4:42�

The general solution to Eqn (4.42) is an elliptic integral of
the first kind [254]

dÿ1 F�y; k� �
�

dc������������
W�c�p � y

L0
: �4:43�

Its particular solutions AÿD depend on the absolute and
relative magnitudes of the controlling (bifurcation) para-
meters c0 and cm in Eqn (4.40) (Fig. 12). They define the
coefficient d and the modulus k of the elliptic integral, and the
roots of the cubic equation W�c� � 0:

c1 � 1 ;

c2;3 �
1

2

�
ÿ�1� cm� �

����������������������������������������������
�1ÿ cm�2 ÿ 4�1ÿ c0�

q �
: �4:44�

From Eqn (4.44) it follows that at

c0 < 1ÿ 1

4
�1ÿ cm�2 �4:45�

equation W�c� � 0 has one real root. The integral (4.43) in
this case describes a spatially periodical annihilation structure

1

4

F�y; k�
F�p=2; k� �

y

L
�4:46�

with the period L � 4dÿ1F�p=2; k� and the ratio of the width
of annihilation channels to the distance between them

DLa

L
� 1ÿ 1

2

F�y0; k�
F�p=2; k� ; �4:47�
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Figure 12. Regions AÿD of parameters c0 and cm corresponding to the

existence of various annihilation and defect structures.
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where

cos y � d2 ÿ 1� c

d2 � 1ÿ c
; cos y

���
c�0
� cos y0 ;

k2 � 1

2
� 1

4

3� cm

d2
; d2 � �3� 2cm ÿ c0�1=2 : �4:48�

Figure 13a shows the results of calculation of the
annihilation structure (4.46) with c0 � 0:5, cm � 0. The
fraction of channels DLa=L in the structure being considered
is 0.69. The relatively broad channels with DLa=L > 0:5 are
characteristic of the range of parametersc0 andcm marked in
Fig. 12 with letter A. Curve 1 in this diagram corresponds to
condition (4.45).

Outside regionA, equationW�c� � 0 has three real roots.
The character of the annihilation structure in this case
depends on the relationship between the roots (4.44). At
c3 < c2 < c1, we have the annihilation structure

1

2

F�y; k�
F�p=2; k� �

y

L
; L � 4L0��������������

1ÿ c3

p F

�
p
2
; k

�
; �4:49�

sin y �
�
1ÿ c
1ÿ c2

�1=2

; k �
�
1ÿ c2

1ÿ c3

�1=2

:

If the condition cm > c0 ÿ 1 is satisfied (curve 2 in Fig. 12),
the roots c2 and c3 become negative.

The annihilation structure shown in Fig. 13b corresponds
to this condition (c0 � 0:9, cm � 0). In Fig. 12, the condition
cm > c0 ÿ 1 corresponds to the range of parameters B,
within which the fraction of annihilation channels in the
defect structure

DLa

L
� 1ÿ F�y0; k�

F�p=2; k� ; sin y0 � 1��������������
1ÿ c2

p �4:50�

varies from 0 to 0.5. It is such a relation between DLa and L
that is observed in the majority of experiments (see Fig. 11).

Upon transition to regionC, the root c2 becomes positive
�c3 < 0�. This root is not greater than c1 � 1 on condition
that cm > ��c0 ÿ 3�=2 (curve 3 in Fig. 12). Annihilation
channels in the range of parameters C are not entirely
defect-free, but contain a finite density of defects (disloca-
tions) r2 � c2r0 < r0 (channels of typeC in Fig. 13c). Figure
14 shows the histogram of distribution of defects across the
width of such a channel in neutron-irradiated (to a dose of
1018 cmÿ2) copper [263]. The solid line in this diagram
illustrates the distribution of defects as described by Eqn
(4.49) with c0 � 1:47.

At c2 � c1 � 1, the density of defects in the channels is
equal to the initial density. Thismeans that atc0 � 3,cm � 0,
the defect structure is stable against the process of annihila-
tion decay. At c2 > c1, c0 > 3 (region D in Fig. 12), the
integral (4.43) describes the ordinary dislocation structure
with the dislocation density r > r0:

1

2

F�y; k�
F�p=2; k� �

y

L
; L � 4L0�����������������

c2 ÿ c3

p F

�
p
2
; k

�
;

k sin y �
�

cÿ 1

cÿ c3

�1=2

; k �
�

c2 ÿ 1

c2 ÿ c3

�1=2

: �4:51�

Figure 13d shows this structure with c0 � 6, cm � 0.
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Figure 13. Character of annihilation structures corresponding to the

regions A (a), B (b), C (c), and D (d) of parameters c0 and cm in Fig. 12.
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Figure 14. Histogram of the distribution of dislocation loops in the cross
section of the annihilation channel in copper irradiated with neutrons
[263]. Solid curve plotted from Eqn (4.49) with c0 � 1:47, cm � 0.
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In this way, the character of the dislocation structure that
is formed because of plastic deformation in crystals that have
been irradiated, quenched or predeformed at low tempera-
ture, depends essentially on the absolute and relative
magnitude of the parameters c0 and cm. From definitions
(4.39) it is clear that these parameters depend in turn on the
initial density of defects r0 / N0 and on the coefficient of
annihilation of screw dislocations ka.

Some of the radiation and quenching loops, after
recombination with gliding dislocations [248 ± 250], can
form Frank ±Read dislocation sources with a density
n0 � b0 r

3=2
0 , where the coefficient b0 defines the efficiency of

loops as Frank ±Read sources.
Given that the loops may also act as obstacles, on which

dislocations multiply in the same way as on forest disloca-
tions: �blm�ÿ1�bf kf r

1=2
0 , where bf is the relevant efficiency,

we find the parameters c0 and cm as functions of the initial
density of defects:

c0 �
3b0
bka

rÿ1=20 ; cm �
3�bi ÿ 1�

2ka
bf kf r

ÿ1=2
0 : �4:52�

Since the density of loops varies with the irradiation dose as
N0 / F n, n � 1=2ÿ2=3 [254], we find that the parameters c0

andcm decrease with the dose asc0 / cm / Fÿn=2. The ratio
cm=c0 � �bi ÿ 1� bf�bkf�=2b0 � 10ÿ2 [255] then remains
approximately the same.

The dashed line in Fig. 12 schematically shows how the
increase in the irradiation dose and the density of loops leads
to a decrease in the parameters c0 and cm and a gradual
transition from the dislocation structures of type D to the
annihilation structures of types C, B and A (see Fig. 13). In
nickel single crystals subjected to nonuniform bombardment
with neutrons, for example, such a transition was observed
when slip lines crossed the boundary between irradiated and
unirradiated parts of the crystal. This transition was accom-
panied by a coarsening of slip lines and the formation of
defect-free channels [230].

Another factor that strongly affects the values of the
critical parameters c0 and cm is the coefficient of annihila-
tion of dislocations ka. Figure 15 shows the temperature
dependence of annihilation coefficients for a number of bcc
and fcc (face-centered cubic) metals derived from strain-
hardening curves [159 ± 164] of these metals at different
temperatures using relation (3.11) between the coefficient of
strain hardening y and the flow stresses at the third stage of
the hardening curve, which can also be represented in the
form [157, 264]

y � ym ÿ 1

2
kas : �4:53�

The slope of these lines (see Fig. 1) defines the coefficient of
annihilation. In the case of fcc metals we have ka / sÿ13 [160,
162], where s3 is the stress at the beginning of the third stage
of strain hardening. Taking into account the temperature
dependence of s3 [265], we obtain [113, 163]

ka�T� � ka�0� exp
�
kT

A
ln

_e0
_e

�
: �4:54�

The temperature dependences of ka in Fig. 15a are plotted
in the coordinates ln ka ÿ T. We see that with an increase in
the stacking fault energy gD the slope of the lines increases, as
the energy parameterA decreases with increasing gD [265]. As

regards the bcc metals, the coefficient of annihilation of
dislocations for them depends on the stress of lattice friction
of dislocations (the Peierls stress): ka / sÿ1P �T� [113, 162].

Figure 16b shows the dependence of ka on the inverse yield
stress s0�T� for a-Fe and Mo [162] in the temperature range
�0:1ÿ0:25�Tm. At T < 0:1Tm, owing to the high stress of
lattice friction of dislocations, the coefficient of annihilation
of screw dislocations is practically zero, while at T � 0:2Tm

for Mo it approximately equals 40. Such a large value of the
coefficient of annihilation of screw dislocations in Mo
explains why defect-free [225, 226] and dislocation-free
[237 ± 245] channels form so easily in this metal. The
formation of dislocation-free channels is caused by the
dramatic reduction of the critical parameter c0 / kÿ1a �T� as
the temperature increases, so that this parameter falls within
the region of formation of dislocation-free channelsC, B, and
A (see Fig. 12).

Note in conclusion that the formation of dislocation-free
channels in experiments on mechanical fatigue [60 ± 62] may
also be the result of annihilation decay of the system of
deformation dipoles, which are easily formed under cyclic
plastic deformation.

5. Cellular dislocation structure

As indicated by the electron microscopic studies [43 ± 49], in
upon plastic deformation of crystals, at the second and
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Figure 15. Coefficients of annihilation of screw dislocations: (a) in fcc

metals (1, Al; 2, Ni; 3, Cu; 4, Ag; 5, Au [113, 162, 163]) vs. temperature; (b)

in bcc metals (1, Mo; 2, a-Fe [113, 261]) vs. inverse yield stress s0.
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third stages of strain hardening, the layered dislocation
structures [46] typical of the first stage of hardening, give
way to two-dimensional (network [49]) and three-dimen-
sional (cellular [43 ± 46]) dislocation structures. The forma-
tion of such structures depends on the operation of two or
more slip systems. Attempts to establish the mechanism of
their formation were based on the force [266], energy [84,
267], and kinetic considerations [83, 87, 114, 116, 268], as
well as on the computer simulation of dislocation dynamics
[269].

The first two approaches neglect the real features of the
crystal structure (the presence of impurities, inclusions, and
other obstacles in the way of moving dislocations), which, as
indicated by experiment, are important for the formation of a
cellular dislocation structure. The kinetic approach to the
problem takes the crystal structure into account by including
the structure-dependent processes of multiplication, immobi-
lization, annihilation, and diffusion of dislocations into the
initial kinetic equations. In most cases, the researchers
confined themselves to qualitative analysis of the kinetic
equations [83, 87, 268], or to the linear analysis of their
stability with respect to the spatial fluctuations of density
[114]. In this section we will discuss those works in which the
analysis of the kinetics of formation of cellular structures goes
as far as a direct quantitative comparison of experimental and
theoretical results [116, 124, 270 ± 273].

5.1 Equation of evolution of dislocation density
in the case of multiple slip
The cellular dislocation structure starts to form at the second
stage of hardening in the form of a network of individual
dislocations [274], their bundles [43 ± 46, 274], and tangles [46,
48]. Toward the end of the second stage of hardening, the
bundles join together, forming a cellular structure with a high
density of dislocations at the borders of the cells, and a low
density of dislocations within the cells. When two slip systems
have approximately the same orientation of slip planes with
respect to the axis of extension (compression) of the crystal,
the resulting dislocation structure has a network appearance
(rectangular or square), with the cell boundaries aligned with
the respective crystallographic slip planes [49, 175]. When
many slip systems act simultaneously, the cells become
rounded and lose coordination with the crystallographic
planes.

Given this, the kinetic equation (4.15) for the densities of
dislocations r1 and r2, when two slip systems are in action,
can be written in the form [116]

qr1
qt
� �Mÿ 1�lDu q2r1

qx2

� �1ÿ bi�lÿ1m ur1 � df r
1=2
2 ur1 ÿ haur21 ; �5:1�

qr2
qt
� �Mÿ 1�lDu q2r2

qy2

� �1ÿ bi�lÿ1m ur2 � df r
1=2
1 ur2 ÿ haur22 ; �5:2�

where lD � ph20=ls is the characteristic distance of diffusion
of dislocation by the DCS mechanism in the direction
transverse to the slip plane of dislocations (4.18).

Since the densities of dislocations in the primary and
secondary slip systems at the second stage are practically the
same (r1 � r2 � r [183]), equations (5.1) and (5.2) can be

reduced to one equation

qr
qt
� �Mÿ 1�lDu q2r

qy2
� �1ÿ bi�lÿ1m ur� df r3=2urÿ haur2 :

�5:3�

Taking into account that bi � lm=li � hilmri0, and setting
the right-hand side of Eqn (5.3) equal to zero, we obtain Eqn
(4.19) at n � 0. It has two solutions, represented by points b
and c at the intersections of curve 1 with straight line 2 in
Fig. 7. Analysis indicates that the former is an unstable focus,
and the latter is a saddle.

Noting that qr=qt � �qr=qe�_e, where _e � bru is the rate of
plastic deformation, Eqn (5.3) can also be written in the form

r
qr
qe
� �Mÿ 1� lD

b

q2r
qy2
� kar

� ���
r
p ÿ �����

rb
p �� ���

r
p

c ÿ
���
r
p �

;

�5:4�

where the densities of dislocations rb and rc, corresponding
to the points b and c in Fig. 7, are, respectively,

r1=2b; c �
kf �

�
k2f ÿ 4�bi ÿ 1�kakm

�1=2
2ka

; km � �blm�ÿ1 : �5:5�

Passing to the dimensionless variables

c � r
rc
; Y � y

L0
; G � kae ;

L0 �
��Mÿ 1�lD

bka rc

�1=2
; �5:6�

we obtain the equation

c
qc
qG
� q2c
qY 2

� c
� ����

c
p
ÿ c0

��
1ÿ

����
c

p �
; �5:7�

which contains one controlling parameter

c0 �
�����
rb
rc

r
� 1ÿ �����������

1ÿ Z
p

1� �����������
1ÿ Z
p ;

Z � 4�bi ÿ 1� kakm
k2f

; 0 < Z < 1 : �5:8�

We see that this parameter depends on the combination Z of
kinetic coefficients that define the intensity of the processes of
multiplication, immobilization, and annihilation of disloca-
tions.

5.2 Cellular structure and its parameters
For a homogeneous distribution of dislocations, when
c�G� � #�G� � r�G�=rc, Eqn (5.7) takes on the form

q#
qG
�
� ���

#
p
ÿ c0

��
1ÿ

���
#
p �

: �5:9�

At #4c2
0, it describes the evolution of the dislocation density

r�e� � r1

�
1ÿ exp

�
ÿ 1

2
kae
��2

; r1 � rc �
�
kf
ka

�2

;

�5:10�
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and flow stresses

s�e� � ambr1=2 � s1

�
1ÿ exp

�
ÿ 1

2
kae
��

; s1 � ambr1=21 ;

�5:11�

at the second and third stages of the crystal strain-hardening
curve.

The homogeneous distribution of dislocations, however,
turns out to be unstable, and under certain conditions a
spatially modulated cellular dislocation structure is formed in
the crystal. At qc=qG � 0, that is, at the end of the third stage
of hardening, Eqn (5.7) describes the equilibrium cellular
dislocation structure [116, 270]

r�y� � r1max�
1� � f1 ÿ 1� sin2�py=L1�

�2 ;
L1 � 4p

� �Mÿ 1�lD
�bi ÿ 1�bkm

�1=2
; f1 �

����������
r1max

rmin

r
;

r1max �
�
6

5

�2

rc ; rmin �
�
5

4

�2

rb ; �5:12�

where r1max and rmin are the densities of dislocations in the cell
walls and inside the cells, under the following conditions:

�1� c0�2 ÿ
25

6
c0 > 0 ; 0 < c0 <

2

3
; Z <

24

25
: �5:13�

Conditions (5.13) impose restrictions on the absolute and
relative values of the kinetic coefficients.

Because Eqn (5.7) is nonlinear, the variables Y and G
cannot be separated. In Ref. [270] a model expression was
proposed for the solution of this equation, which at G!1
tends to the steady solution (5.12)

r�y; e� � rmax�e��
1� ÿ f�e� ÿ 1

�
sin2�py=L1�

�2 ; �5:14�

rmax�e� �
�
6

5

�2

rc#�e� ; f�e� �
���������������
rmax�e�
rmin

s
:

Obviously, as G � kae!1, the density of dislocations is
r�e�=rc � #�e� ! 1, and Eqn (5.14) becomes the same as
(5.12). The conditions of formation of cellular structure then
become dependent on the deformation:

�1� c0�2#1=2�e� ÿ
25

6
c0 > 0 ;

0 < c0 <
2

3
; Z <

24

25
: �5:15�

The first of these conditions defines the critical deformation
G cr � kae cr for the start of formation of the cellular structure

e > e cr � 2

ka
ln

�1� c0�2
�2=3ÿ c0��3=2ÿ c0�

: �5:16�

It is smaller, the larger the coefficient of annihilation of
dislocations ka, and the smaller the parameter c0. As
c0 ! 2=3, the critical deformation e cr !1. Since the
parameter c0 is the larger, the stronger the immobilization

of dislocations (by impurities, inclusion particles, grain
boundaries, etc.), in some materials the formation of a
cellular structure is hampered or not possible at all Ð for
example, in bcc metals undergoing deformation in the
temperature range below 0:1Tm [237, 238].

Figure 16a shows the evolution of the dislocation density
in the cell walls as the extent of deformation increases in
accordance with Eqn (5.14) at c0 � 0:1 and G cr � 0:8. The
dashed line in the diagram marks the critical density of
dislocations r�e cr�=r1max � �25=12�2c2

0 �c0 5 1� at which the
cellular structure starts to form. The density of dislocations in
the cell walls increases according to the second expression in
Eqn (5.14). This implies that the mean distance between the
forest dislocations in the cell walls is

l�e� � �rmax�e�
�ÿ1=2 � l1

1ÿ exp�ÿkae=2� ; l1 � 5

6
�����
rc
p :

�5:17�

The curve in Fig. 16b depicts the theoretical dependence
l�e�, and the experimental points correspond to the thermo-
activated path of dislocations la as a function of strain in
aluminum at 77 K at the second and third stages of strain-
hardening curve measured with nuclear magnetic resonance
[275]. Since it is the forest dislocations that are the main
obstacles for thermally activatedmotion of dislocations at the
second and third stages of strain hardening, we have
la�e� / l�e�, and therefore the free path must decrease with
increasing strain, in accordance with Eqn (5.17), which is
what is actually observed in experiment.

As indicated by experiment (Fig. 16d), the mean size of
cells L in the course of plastic deformation does not remain
constant: it gradually decreases, reaching its equilibrium
value L1 by the end of the third stage [276 ± 278]. A detailed
study of the evolution of cell size in copper single crystals [276]
revealed that, as the deformation proceeds further, the size of
cells decreases through the formation of new boundaries
inside the cells; that is, we are dealing with the process of
division of cells. Since the formation of new dislocation
boundaries requires a supply of fresh dislocations, the
kinetics of multiplication of boundaries (division of cells)
must be closely related to the kinetics of multiplication and
annihilation of dislocations at the second and third stages of
strain hardening. Indeed, since the density of cell boundaries
per unit length is Lÿ1�e�, and the dislocations concentrate
mainly in the cell walls, themean density of dislocations in the
crystal is r�e� � �L�e�dl�e��ÿ1 and, with due account for Eqns
(5.10) and (5.17), we have [270]

L�e� � L1
1ÿ exp�ÿkae=2� ; d � 1

l1L1rc
: �5:18�

The curve in Fig. 16d is plotted according to Eqn (5.18).
The experimental points in this diagram are taken from Ref.
[270] and indicate the size of cells in copper rolled to different
reductions at 4.2 (filled circles), 20 (empty circles), 77
(triangles), and 300 K (squares). The analysis of experimen-
tal curves L�e� for the pure metals Al [277], Ni [280], Cu [278]
and the alloys Cu ±Zn, Cu ±Al [281] in the coordinates
ln �1ÿ L1=L� ÿ e, performed in Refs [282, 283], reveals
good agreement with Eqn (5.18). The coefficient of annihila-
tion of dislocations ka found from the slope of these lines
increased steadily with the stacking-fault energy of metal or
alloy in the same manner as shown in Fig. 15a.
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As the degree of plastic deformation increases, the width
(thickness) of cell walls DL decreases, while the ratio
DL�e�=L�e�, as follows from Fig. 16c, remains constant.
This ratio equals 0.23 for copper, 0.32 for nickel. Selecting
the value DL1=2 for the boundary width corresponding to the
density of dislocations within the boundary r1=2 �
�1=2�rmax�e�, we obtain from Eqn (5.14) and Eqn (5.18)

DL1=2

L
� 2

p

�
rmax�e�

rc

�1=2
arcsin

� ���
2
p ÿ 1

f �e� ÿ 1

�1=2

: �5:19�

Calculation indicates [271] that the ratio (5.19) remains
constant as the deformation increases from critical to
e!1. At c0 5 1, this ratio is 0:4c1=2

0 .
From optical measurements [17, 21] we know that at the

second stage of hardening of fcc metals the length of slip lines
decreases with increasing deformation as L � L0�eÿ e2�ÿ1,
where e2 is the deformation corresponding to the beginning of
the second stage, andL0 is a constant, which is, for example, 4
mm for copper single crystals and 6 mm for nickel [21].

Obviously, the length of slip lines depends on the free path
of dislocations l. When the moving dislocations interact with
the forest dislocations, we have lf � 1=�bkf r1=2f �. Since in the
case of cellular structure the forest dislocations are concen-
trated in the cell walls, we find that the length of slip lines in
the cellular structure ought to be L � �1=2�bkf r1=2max�e�. Using
Eqns (5.10) and (5.14), we obtain [271]

L � L1
1ÿ exp�ÿkae=2� ; L1 � 5

12bkf r
1=2
c

: �5:20�

With deformations e5 2=ka (that is, at the second stage of
hardening), given that rc � �kf=ka�2, we obtain, in agreement
with experiment,

L � L0

eÿ e2
; L0 � 5b

6�bkf�2
; L1 � 1

2
kaL0 : �5:21�

Since bkf � 10ÿ2, the constant L0 is on the order of a few
microns. For copper, as reported in Ref. [17], we have
L1=L0 � 2:5, and therefore at room temperature the coeffi-
cient of annihilation must be approximately equal to 5, which
fits in with the results presented in Fig. 15a.

5.3 Self-similarity of cellular structures
As follows from the experimental and theoretical results
presented above, the parameters of cellular structure exhibit
a regular change with deformation at the second and third
stages of the strain-hardening curve. These parameters, for
example, the size of dislocation cells [284] and the flow stress,
or the same parameters and the mean density of dislocations
[276, 285, 286], are linked by the relations

L � K1
mb
s
; L � K2

1���
r
p ; s � K3amb

���
r
p

; �5:22�

which are invariant to plastic deformation, where K1, K2, K3

are some coefficients that do not depend on plastic deforma-
tion.

These facts, as well as some other considerations, served
as basis for formulating the principle of self-similarity of
cellular dislocation structures [287]. This principle states that
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Figure 16. (a) Evolution of the density of dislocations in cell walls with increasing deformation (1, G cr � 0:8; 2, 1.0; 3, 2.0; 4,1). (b) Free paths of
dislocations la within cells in Al [275] vs. degree of deformation. (c) Correlation between the width of boundaries and the cell size in Cu [279] andNi [280].
(d) Cell size in copper [278] depending on the reduction of area upon rolling.
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an increase in strain and flow stress results in a decrease in the
dimensions of the dislocation network within the cell limits l
and the size of cells L, but the ratio L=l remains constant and
does not depend on strain and stress, and this is actually
observed in experiment [276].

Naturally, any theory of cellular dislocation structures
must be consistent with this principle or at least not contrary
to it. From the results presented in the preceding section we
see that the solution (5.14) of equation (5.4) is in agreement
with this principle. The expressions for the parameters of cells
as functions of deformation (5.10), (5.11), (5.16) and (5.17)
obtained with the aid of this equation permit the coefficients
K1, K2, K3, and K4 � L=l to be found.

Taking into account Eqn (5.18), in which, in accordance
with the two-phase model of cellular structure [288],

r�e� � drmax�e� � �1ÿ d� rmin�e� ; �5:23�

where d is the volume fraction of dislocations confined in the
cell walls, we obtain the following relations for the coefficients
K [271]:

K1 �
�
6

5

�2

adÿ1=2 ; K2 �
�
6

5

�2

dÿ1=2 ;

K3 � 6

5
d1=2 ; K4 �

�
6

5

�2

dÿ1 ; �5:24�

where d � �6=5��L1 �����
rc
p �ÿ1.

The relations (5.24) must be supplemented by the relation
between the free path of dislocations in the cellular structure
[the length of slip lines (5.20)] and the mean size of cells:
L � K5L, K5 � �25=72��d=bkf�. With L1 � 1 mm, rc � 1010

cmÿ2, we have d � 0:12, and therefore with a � 0:5,
bkf � 10ÿ2, the coefficients K are of the same order of
magnitude as the experimental values. For example, the
experimental value for aluminum found in Ref. [289] is
L=L � 3ÿ4, whereas the estimate gives K3 � 3:6.

Figure 17a shows the flow stress versus the mean density
of dislocations in single crystals of iron [290] oriented for
single (�110�, filled circles) and multiple (�100�, empty circles)
slip at two temperatures. The arrow marks the point where
the cellular structure starts to form in the crystal. We see that
at 77K the formation of a cellular structure causes a change in
the effective constant of interaction between dislocations
a� � K3a owing to the reduced density of dislocations inside
the dislocation cells. Taking into account the coefficientK3 in
Eqn (5.24), we obtain the estimates for the volume fraction d
occupied in the crystal by the cell walls: 0.6 and 0.1 for the
orientations [110] and [100], respectively. At 293 K, the
cellular structure is formed for both orientations at a very
early stage of deformation, and it is not possible to find the
coefficient K3.

Figure 17b shows similar results for pure Al and the solid
solution Al ± 5.5 at. %Mg [291] at 293 K. The estimate gives
d � 0:13 for pure aluminum, and d � 0:53 for the alloy. This
means that the difference in the density of dislocations in the
walls and inside the cells c0 � �rb=rc�1=2 in the alloy and in
pure aluminum is not large. Indeed, taking into account Eqn.
(5.12) and (5.24), we have

d � 3

10p

�
bka

�Mÿ 1�lD

�1=2
c1=2
0 � c1=2

0 : �5:25�

We also see that the formation of a cellular structure is
hampered in the alloy and occurs at a higher density of
dislocations (r cr � 2:5� 109 cmÿ2) than in pure aluminum
(r cr � 6� 108 cmÿ2), because �c0 5 1�

r cr � 3rcc
2
0 � c2

0 ; or r cr � 3rb � 3�bi ÿ 1�kfkm :
�5:26�

5.4 Formation of a cellular structure
in polycrystalline materials
Our treatment of the mechanism of formation of cellular
dislocation structures would have been incomplete without
discussing the features specific to polycrystalline materials.
As indicated by experiment [47, 292], the size of grains d
affects the critical strain when the cellular structure starts to
form in the crystallites. The smaller the grain, the sooner the
cellular structure will start to form in the polycrystalline
material. There is a critical size d cr, such that at d < d cr the
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Figure 17. Flow stress vs. density of dislocations: (a) in single crystals of a-
Fe [290]; (b) in polyscrystalline Al of 99.99% purity and in Al ±

5.5 at.%Mg alloy [291].

910 G AMalygin Physics ±Uspekhi 42 (9)



cellular structure would not form [293], whereas at d > d cr the
size of dislocation cells increases with increasing grain size [47,
293].

According to the criterion of formation of a cellular
structure (5.15), the decrease in the grain size raises the
values of bi � lm=lis � lm=d, which leads to violation of the
condition Z < 1, c0 < 2=3. This explains the existence of the
critical grain size d cr. The increase in the threshold e cr as the
grain size increases, e cr / d [294], is associated with the fact
that the cellular structure starts to form near the grain
boundaries and then goes into the bulk. The smaller the
grain, the sooner it will be occupied by the cellular structure as
the strain increases. As regards the dependence of the cell size
on the size of grain, we note that bi�d�4 1 and obtain from
Eqn (5.12) [116, 294]

L1 � 4p
��Mÿ 1�lDd

�1=2 / d 1=2 : �5:27�

The diagram in Fig. 18 is based on the results of Ref. [293],
and shows the size of dislocation cells in polycrystalline
aluminum versus the grain size at the deformation e � 0:2
and different temperatures as indicated in the diagram,
according to Eqn (5.27) (see also Ref. [47]). Note that the
lines L / d 1=2 cross at the critical values of L cr � 0:9 mm and
d cr � 3:6 mm, below which, as reported in Ref. [293], cellular
structures do not form in aluminum.

6. Conclusion

The foregoing discussion of the mechanisms of formation of
various dislocation structures in crystals subjected to plastic
deformation indicates that the approach based on the
equations of dislocation kinetics warrants adequate qualita-
tive and quantitative treatment of these mechanisms,
accounting for the effects of various external and internal
factors on these structures.

Dislocation structures differ from structures formed in
other active media in that they have a predominantly kinetic
character, and are weakly linked with the conditions of

thermodynamic equilibrium of the dislocation ensemble in
the crystal. This means that, once formed, the dislocation
structures `freeze-in' in the crystal, and do not disappear after
the removal of their cause, for example, an external force.
This infinitely large time of relaxation of dislocation
structures to their initial state is due to the existence at low
and medium temperatures of the force of friction acting upon
dislocations from the lattice (the Peierls relief), or from the
point obstacles (impurity atoms, forest dislocations) that
considerably limit the mobility of dislocations.

Under external stress, however, the mobility of disloca-
tions is sufficient to let them rearrange and form new
structures, which may cause misorientation and fragmenta-
tion of the lattice. As noted in the Introduction, space
limitation has not allowed us to discuss the mechanism of
formation of such structures within the framework of a
unified kinetic approach, and the associated elastic and
plastic rotations of the lattice [119, 120, 211, 295, 296].

The kinetic approach allows an answer to be found to
such an important and not finally clarified question as the
nature of the linkage between the stages of strain hardening of
the crystal and the relevant dislocation structures [156, 180,
274]. A widespread view is that each hardening stage depends
on the specific dislocation structure formed during this stage.
The results discussed in Sections 2 and 5 (see Figs 4 and 17)
indicate that both the hardening stages and the relevant
dislocation structures are a regular result of the evolution of
the dislocation ensemble and the associated elementary
dislocation processes, such as the generation of dislocations
from sources, their immobilization, multiplication, annihila-
tion, and diffusion.

The formation of nonequilibrium dislocation structures is
the consequence of spatial instability of the distribution of
dislocations in the crystal, their self-organization and cluster-
ing through immobilization at obstacles �bi > 1�, and the
inversion of the dislocation flow because of the correlation
effects and the process of deformation (dislocation) hard-
ening of the dislocation ensemble �M > 1�. This means that
the segmentation of hardening curves and the formation of
structures have the same cause, namely, the space ± time
(deformation-related) evolution of the ensemble of disloca-
tions in the crystal.

Note that the evolution of physical ensembles consisting
of linear rather than pointlike elements (`particles') has many
universal features and is often described by similar equations.
For example, in Ref. [133], in connection with the study of the
rate of formation of the normal phase as thermal vortices in
superfluid helium, this rate was found to obey the kinetic
equation

dL

dt
� k1L

3=2 ÿ k2L
2 ; �6:1�

where L is the total length of vortices per unit volume.
Introducing the dimensionless density of vortices

�L � L=L0, L0 � �k1=k2�1=2, we obtain
d �L

dt
� k21

k2
�L 3=2�1ÿ �L 1=2� : �6:2�

Figure 19 shows the rate of formation of vortices versus their
density according to Eqn (6.2). Equation (6.1) is similar to
Eqns (3.5) and (5.3), which describe the rate of change of the
density of dislocations at the second and third stages of strain
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Figure 18. Dislocation cell size in Al of 99.99% purity vs. grain size at

different temperatures [293].
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hardening of crystals because of multiplication of intersecting
dislocations and annihilation of the screw components of
dislocation loops. Similar processes also take place in the
ensemble of vortex filaments in hard superconductors [131,
132].

It is clear that the macroscopic theory of plasticity of
crystals must rely on the microscopic dislocation ± disclina-
tion basis, since it is only at this level that the structure of the
crystal affects the parameters of the strain-hardening curve
and the distribution of dislocations in the crystal, as well as
the emerging dislocation and deformation mesostructures,
such as slip lines and bands, cellular and fragmented
dislocation structures, pileups of dislocations of the same
sign that define the fields of internal stress in the crystal
undergoing deformation. A combination of microscopic and
macroscopic approaches to plastic deformation is a priority
for the merger of the physics of the strength and plasticity of
crystals and deformation mechanics.

Finally let us note that, apart from the strength calcula-
tions as such, the dislocation kinetic equations are indis-
pensable for the high technologies of today, such as the
growth of perfect (defect-free) [297, 298] crystals and
epitaxial films for microelectronics [299], or whenever the
force acting on a solid produces mechanical tension.

The author is grateful to E V Kozlov, N A Koneva and
A Luft for stimulating discussions of the mechanism of
formation of cellular and annihilation structures, and to
B I Smirnov and O V Klyavin for the discussion of the role
of double cross slip of screw dislocations in the evolution of
dislocation ensemble in the course of plastic deformation of
crystals.

Appendices

I. Statistical averaging of a dislocation ensemble
For the purpose of statistical averaging of equations (2.10),
(2.11) and the equation of motion of dislocations (2.4), we
introduce the microscopic phase density ja�l; t� for a
dislocation segment of length l a, having velocity u a

l , orienta-
tion n al , and Burgers vector b a, and located at the point with
coordinate r al �t�:

ja�l; t� � l a

O
d
ÿ
rÿ r al �t�

�
d
ÿ
uÿ u a

l �t�
�
d
ÿ
m ÿ m a

l �t�
�
; �I:1�

where O is the volume of crystal, and d�xÿ xl� is the delta
function. In the argument of function ja�l; t�, symbol l stands
for the set of statistical parameters r, u, m .

The total phase density of distribution of all segments
with Burgers vector b a in the nine-dimensional phase space is

Na�l; t� �
X
k

ja�lk; t� : �I:2�

If the dislocation ensemble contains dislocations with
different Burgers vectors, then the total phase density of the
ensemble is

N�l; t� �
X
a

Na�l; t� : �I:3�

The phase densities (I.1) ± (I.3) are normalized as follows:�
ja�l; t� dl � l a�t�

O
;

�
Na�l; t� dl � Oÿ1

X
k

l ak �t� �
La�t�
O

;

�
N�l; t� dl � Oÿ1

X
a

La�t� � L�t�
O

: �I:4�

Here,La is the total length of dislocations with Burgers vector
ba, L is the total length of dislocations in the ensemble, and
dl � dr du dn is the element of volume in the phase space. The
normalizations (I.4) presume that the number of dislocations
or the density of dislocations r�t� � L�t�=O do not remain
constant, but change with time.

The Liouville equation for the microscopic phase density
(I.1) then becomes (superscript a dropped)

dj�l; t�
dt

� qj
qt
� Hr � �ulj� � Hu � � _ulj� � Hn � � _mlj� �

_l

l
j ;

�I:5�

where the dot denotes the time derivative. Since
_u � _nu� n �u � _nu, further on for the independent statistical
variable we will take not the velocity of dislocation u, but the
direction of its motion n .

Given this, for the phase density (I.2) we have the
equation

dNa�l; t�
dt

� qNa

qt
� Hr � �u aNa� � Hx � � _naNa� � Hn � � _m aNa�

�
_La

La
Na ; �I:6a�

and, similarly, for the phase density (I.3)

dN�l; t�
dt

� qN
qt
� Hr � �uN� � Hx � � _nN� � Hn � � _mN� �

_L

L
N :

�I:6b�
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Figure 19. Rate of formation of thermal vortices in superfluid helium vs.

density of vortices �L � L=L0 according to Eqn (6.2) [133].
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The rates of change of the statistical parameters in Eqns
(I.1) ± (I.3) are determined by the equations of motion of
dislocations (2.4), (2.5) [141]:

u � nu ; _m � �mH�u � qu
ql
; _n � q

qt

�
Rn

qm
ql

�
: �I:7�

As a result, the set of equations (I.6), (I.7) is closed and self-
consistent, since the velocity of dislocations, according to Eqn
(2.5), depends on the stress ŝ in, i.e., the total stress from all
dislocations of the ensemble.

Using Eqn (I.1), we can express the microscopic values of
tensor and scalar densities and their fluxes as

â a�l; t� � �b am a
l �ja�l; t� ; Ĵ a�l; t� � �b an a

l �ua ja�l; t� ;
r a�l; t� � ja�l; t� ; j a�l; t� � n au a ja�l; t� ; �I:8�

where n � m � n . Averaging the densities and fluxes (I.8) over
the entire phase space, we obtain

â a�l1; t� � �b am a
1� f a1 �l1; t� ; Ĵ a�l1; t� � �b an a

1 �ua f a1 �l1; t� ;
r a�l1; t� � f a1 �l1; t� ; j a�l1; t� � n a

1 u
a f a1 �l1; t� ; �I:9�

where the one-particle distribution function is

f a1 �l1; t� �
�
ja�l; t�N�l; t� dl �

�
N�l; t� dl c2 . . . dlN : �I:10�

The equation for the one-particle distribution function
can be obtained by integrating Eqn (I.6) with respect to all
parameters except l a1 :

df a1 �l; t�
dt

� qf a1
qt
� Hr1 � � uN � � Hx1 � � _xN � � Hn1 � � _nN �

�
_l a1
l a1

f a1 : �I:11�

Expanding the ensemble averages in the first and second
moments

uN � u a
1 f

a
1 � du dN ; _nN � _n a

1 f a1 � d _ndN ;

_mN � _m a
1 f a1 � d _mdN ; �I:12�

and substituting these into Eqn (I.11), we obtain an equation
for the one-particle distribution function of the form

qf a1
qt
� Hr1 � �u a

1 f
a
1 � � Hx1 � � _na1 f a

1 � � Hn1 � � _m a
1 f a

1 �

� F a� f a1 ; f a2 � ; �I:13�
where the `collision integral'

F a� f a1 ; f a2 � �
f a1
t a1
ÿ Hr1 � �du dN � ÿ Hx1 � �d _ndN �

ÿ Hn1 � �d _m dN � �I:14�

accounts for the interaction of dislocations with one another,
and therefore contains the pair distribution function f2.

The equation for f2 can be expressed similarly to the
equation for f1. In Eqn (I.14) we have �t a1 �ÿ1 � _l a1 =l

a
1 �P

p�t a1 �ÿ1p , where �t a1 �p are the characteristic times of
elementary processes that may increase or decrease the
length of dislocations. In the general case, t a1 � t a1 �l a1 ; t�.

Averaging (I.13) and (I.14) with respect to all x1 and n1, we
obtain the kinetic equation for the scalar density of disloca-
tions r a�r; t�

qr a

qt
� Hr � �uar a� �

X
p

�
ua�l1; t�
lap�l1; t�

f a1 �l1; t� dx1 dn1 : �I:15�

Here, we have taken into account that the distribution
functions vanish at the boundaries of the phase space. The
collision integral on the right-hand side of Eqn (I.15) is
expressed in terms of the free paths of dislocations between
elementary acts that affect the dislocation length �lp � utp�,
rather than in terms of the relaxation times tp like Eqn (I.14).
After carrying out integration in Eqn (I.15) with respect to all
x1 and n1, we obtain Eqn (2.12) of Section 2.

In a similar way one can express the kinetic equations for
the tensor density of dislocations â�r; t� and its flux Ĵ�r; t�.

II. Correlation stress
To account for the correlation effects, we multiply the
equation of motion of dislocations (2.4) by the microscopic
function of distribution of dislocations (I.1) jc�l 0; t�. Noting
that the integrand s in

ik in Eqn (2.1) contains the distribution
function ja�l; t�, after averaging over the entire ensemble we
obtain the averaged equations of motion

ni�s ext
ik � s in

ik � s cor
ik �ba

k � b as �f� ; �II:1�

where this time

s in
ik � ÿ

X
a

�
Aiksp�r 0 ÿ r� ba

s n
a
p f a1 �l1; t� dl1 ; �II:2�

s cor
ik � ÿ

X
c

�
Aiksp�r 0 ÿ r� bc

s n
c
p f c1 �l1; t� gac�l1; l2� dl1 dl2 ;

�II:3�
gac�l1; l2; t� � f ac2 �l1; l2; t�

f a1 �l1; t� f c1 �l2; t�
ÿ 1 ; �II:4�

f ac2 �l1; l2; t� is the pair distribution function, gac�l1; l2; t� is the
pair correlation function, and s cor

ik is the correlation stress.
The functions f ac2 or gac can be found from solution of the

self-consistent kinetic equation for the density of dislocations.
Since in the general case this is a formidable problem, we
consider a more specialized case [140], namely, a dislocation
ensemble consisting of an equal number of parallel screw
dislocations of opposite signs with the same type of Burgers
vector. The correlation function for such an ensemble is

gac�l1; l2; t� � dac g�r 0 ÿ r; t� d�x a ÿ x c� d�n a ÿ n c� ;

where dac and d�x� are delta functions. Substituting this into
Eqn (II.3) and noting that f1�r; t� � r�r; t�, we obtain Eqn
(4.4) of Section 4.
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