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Abstract. We study the heat capacity and neutrino emission
reactions (direct and modified Urca processes, nucleon—nucleon
bremsstrahlung, Cooper pairing of nucleons) in the supranuc-
lear density matter of neutron star cores with superfluid neu-
trons and protons. Various superfluidity types are analysed
(singlet-state pairing and two types of triplet-state pairing,
without and with gap nodes at the nucleon Fermi surface). The
results are used for cooling simulations of isolated neutron
stars. Both the standard cooling and the cooling enhanced by
the direct Urca process are strongly affected by nucleon super-
fluidity. Comparison of the cooling theory of isolated neutron
stars with observations of their thermal radiation may give
stringent constraints on the critical temperatures of the neutron
and proton superfluidities in the neutron star cores.

1. Introduction

Neutron stars (NSs) are unique astrophysical objects. First,
their observational manifestations are numerous (radio and
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X-ray pulsars, X-ray bursters, X-ray transients, etc. [1]).
Second, their structure and evolution are determined by
properties of matter under extreme conditions which cannot
be reproduced in the laboratory (supranuclear densities,
superstrong magnetic fields, superfluidity of the baryon
component of superdense matter, etc.).

It is widely accepted (see, e.g., Refs [2, 1]) that NSs are
born at the final stage of evolution of normal stars of mass
M 2 8M,, in gravitational collapse of their cores (M, is the
solar mass). During collapse, the matter of central layers is
compressed to nuclear densities and enriched by neutrons.
As a result, a compact NS is created of mass M ~ M and
radius R ~ 10 km. The core consists mainly of neutrons
(with some admixture of protons, electrons, and — possibly
— hyperons and other particles). A NS is born hot, with an
internal temperature of about 10!' K, but cools down
rapidly due to powerful neutrino emission from the internal
layers.

NSs possess strong gravitational fields; gravitational
acceleration on their surfaces is as large as
~ (2-3) x 10" c¢m s72. The stellar radius R is only 2-3
times larger than the gravitational radius R, = 2GM/c?,
where G is the gravitational constant and ¢ is the speed of
light. Therefore, the effects of General Relativity are impor-
tant in NS life.

In this review, we restrict ourselves to a consideration of
the structure and thermal evolution of isolated NSs of age
t < 10 yr. The evolution of NSs in close binaries is more
complicated; it has been described, for instance, by Lewin et
al. [3].
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The superfluidity and superconductivity of nucleons in
NS interiors play an important role in the evolution of
isolated NSs. For instance, sudden changes of spin periods
(glitches) demonstrated by some pulsars are commonly
explained [4] by the interaction of the normal and superfluid
components of matter in the stellar crusts. Superfluidity
affects the heat capacity and neutrino luminosity of the star,
and therefore its cooling. The effect of superfluidity on the
cooling is the main subject of the present review.

At a certain cooling stage (10°—10° yr) the NS internal
temperature can strongly depend on critical temperatures of
transitions of nucleons into the superfluid state. This feature
was first mentioned by Page and Applegate [S] who called NSs
‘thermometers’ for measuring the nucleon critical tempera-
tures in asymmetric nuclear matter. Microscopic calculations
of such temperatures are complicated owing to the absence of
an explicit many-body relativistic quantum theory which
would describe adequately strong interactions of particles of
various species. However, the critical temperatures can be
studied by the astrophysical method, by confronting cooling
simulations with observations of thermal radiation of isolated
NSs. This work is not finished yet but certain results have
already been obtained. The aim of this review is to describe
the above method and main results obtained to-date (by
January 1999).

2. Overall properties of neutron stars

2.1 Structure

If standard measurements are used, neutron stars (NSs) are
hot objects. Several hundred thousand years after their birth
their internal temperature exceeds 107 K. However, the
equation of state of internal NS layers is practically indepen-
dent of temperature since the main contribution to the
pressure comes from strongly degenerate fermions of high
energy [1].

A NS can be subdivided into the atmosphere and four
internal regions: the outer crust, the inner crust, the outer core,
and the inner core as shown in Fig. 1.

The atmosphere is a thin plasma layer, where the spectrum
of thermal electromagnetic NS radiation is formed. In
principle, this radiation contains valuable information on
the stellar parameters (on the temperature, gravitational
acceleration and chemical composition of the surface, on the
magnetic field, etc., see Section 8.1) and, as a result, on the
internal structure. The geometrical depth of the atmosphere
varies from some ten centimeters in a hot NS down to some
millimeters in a cold one. Very cold NSs may have no
atmosphere at all but a solid surface.

NS atmospheres have been studied theoretically by many
authors (see, e.g., review articles by Pavlov et al. [6, 7] and
references therein). The construction of atmosphere models,
especially for cold NSs (with a surface temperature Ty < 10°
K) with strong magnetic fields 10" —10'* G, is far from
complete owing to the complexity of calculations of the
equation of state and the spectral opacity of the atmospheric
plasma (Section 8.1.2).

The outer core (outer envelope) extends from the atmo-
sphere bottom to the layer of density p=p4~4.3x 10! gecm™3
and has a depth of some hundred meters [1]. Its matter
consists of ions and electrons. A very thin (no more than
several meters in a hot NS) surface layer contains a non-
degenerate electron gas. In deeper layers, electrons constitute

Hyperons?
Pions?
Quarks?

(15— 15)p,

Figure 1. Schematic cross section of a 1.4 M, neutron star. The stellar
parameters depend strongly on the equation of state of internal layers.

a strongly degenerate, almost ideal gas, which becomes
relativistic at p » 10® g cm™3. For p 2 10* g cm™3, atoms
are fully ionized by the electron pressure, being actually bare
atomic nuclei. The electron Fermi energy grows with increas-
ing p, and the nuclei suffer beta-decays and are enriched by
neutrons (see, e.g., Ref. [8]). At the base of the outer core
(p = py) neutrons start to drip from nuclei producing a free-
neutron gas.

The depth of the inner crust (inner envelope) may be as
large as several kilometers. The density p in the inner crust
varies from py at the upper boundary to ~ 0.5p, at the base.
Here, p, = 2.8 x 10'* g cm™3 is the saturation nuclear matter
density. The matter of the inner crust consists of electrons,
free neutrons and neutron-rich atomic nuclei [9, 10]. The
fraction of free neutrons increases with growing p. At the
crust bottom (in the density range from 10'* to about
1.5 x 10 g cm™3) the nuclei may form clusters and have
non-spherical shapes [11, 10]. The nuclei disappear at the
crust-core interface. Neutrons in the inner crust may be in a
superfluid state (Section 3.1).

The outer core occupies the density range
0.5p9 S p < 2py and can be several kilometers in depth. Its
matter consists of neutrons n with some (several per cent by
particle number) admixture of protons p and electrons e
(the so called standard nuclear composition). The composi-
tion of matter is determined by the conditions of electric
neutrality and beta-equilibrium with respect to the reactions
n—p+e+Vve, p+e— n+v., where v and V. stand for
electron neutrino and antineutrino, respectively. The electric
neutrality requires equality of the electron and proton
number densities: 1, = n.. The beta-equilibrium establishes
a relationship between the chemical potentials of the
particles: u, = u, + pt. The neutrino chemical potential is
omitted here since immediately after the birth a NS becomes
fully transparent for neutrinos which freely escape the star
[12, 1].
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All npe-plasma components are strongly degenerate. The
electrons form almost ideal relativistic Fermi gas. The
neutrons and protons, which interact via nuclear forces,
constitute a strongly non-ideal non-relativistic Fermi-liquid.
It can be described using the formalism of quasi-particles [13,
14]. The Fermi momentum pg, of particle species j is related to
their number density n; as pr, = 7 (312 n,-)l/3. Therefore, the
electric neutrality implies the equality of the Fermi momenta
of protons and electrons: pr, = pr,.

Calculations show (e.g., Ref. [1]) that for p ~ p, the
chemical potentials of neutrons and electrons are
Uy = p, =~ 60—-100 MeV, while the chemical potential of
protons is much lower, u,~3-6 MeV. With increasing
density, the Fermi energies of particles grow, so that new
particles can be created. First of all, these are muons which,
like electrons, constitute a strongly degenerate, almost ideal
gas. The appearance of particles in the inner NS core will be
discussed below.

Let us emphasize that properties of the NS crust
(p < 0.5p,) are described by sufficiently reliable microscopic
theories. The situation with matter of supranuclear density,
p R Py, is quite different. Laboratory data on the properties
of this matter are incomplete, and the reliability of the
theories decreases with growing p. An exact self-consistent
quantum theory of matter of supranuclear density has not
been constructed yet. Many theoretical equations of state
have been proposed which can be subdivided conventionally
into the soft, moderate and stiff ones with respect to
compressibility of matter. These equations of state are
considerably different for p > p,. For instance, at p ~ 4p, a
soft equation of state proposed by Pandharipande [15] (based
on the Reid [16] nucleon—nucleon soft-core potential) gives a
pressure which is about an order of magnitude lower than that
given by a stiff equation of state constructed by Pandhar-
ipande and Smith [17] using the mean field approach.

Almost all microscopic theories predict the appearance of
neutron and proton superfluidity in the outer NS core
(Section 3.1). The proton superfluidity is accompanied by
superconductivity (most likely, of the second type) and affects
evolution of the internal magnetic fields (see, e.g., Ref. [18]).

The outer core of a low-massive NS extends to the stellar
center. More massive NSs also possess an inner core. Its
radius may reach several kilometers, and its central density
may be as high as (10— 15)p,. The composition and equation
of state of the inner core are poorly known. It should be
emphasized that they are most crucial for determining the
structure and evolution of massive NSs, and that they
constitute the main NS ‘mystery’. Several hypotheses have
been put forward and are being discussed in the literature; it is
impossible to reject any of them at present:

(1) Hyperonization of matter — the appearance of X- and
A-hyperons (see, e.g., Ref. [1]). The fractions of p and e may
be so high that the powerful direct Urca process of neutrino
emission becomes allowed [19] as well as similar reactions
involving hyperons [20]. In these cases, the neutrino luminos-
ity of the star is enhanced by 5—6 orders of magnitude (see,
e.g., Ref. [21]) as compared to the standard neutrino
luminosity of the outer core produced mainly by the modified
Urca process. This accelerates considerably NS cooling
(Sections 2.2 and 7).

(2) The second hypothesis, proposed in different forms in
Refs [22—-26], assumes the appearance of pion condensation.
The condensates soften the equation of state and enhance the
neutrino luminosity by allowing direct Urca type reactions

[22, 23,27, 28]. However, many modern microscopic theories
of dense matter predict weakly polarized pionic degrees of
freedom which are not in favor of pion condensation [21].

(3) The third hypothesis predicts a phase transition to
strange quark matter composed of almost free u, d and s
quarks with a small admixture of electrons (see, e.g., Refs [29,
30]). In these cases the neutrino luminosity is thought to be
considerably higher than the standard luminosity due to
switching on the direct Urca processes involving quarks [31,
32,21]. However, in some models (e.g., Ref. [33]) the presence
of quarks does not enhance the neutrino luminosity.

(4) Following Kaplan and Nelson [34], Nelson and
Kaplan [35] and Brown et al. [36], several authors considered
the hypothesis on kaon condensation in dense matter. Kaon
condensates may also enhance the neutrino luminosity by
several orders of magnitude [21]. A critical analysis of
contemporary theories of kaon condensation was given in
Ref. [37].

For any equation of state, one can build a set of NS
models with different central densities p_. This can be done by
solving numerically the equation of hydrostatic equilibrium
with account for the effects of General Relativity (the
Oppenheimer —Volkoff equation, see, e.g., Ref. [1]). With
increasing p,, the stellar mass M usually grows, and the radius
R decreases (a star becomes more compact). As a rule, the
mass p, reaches maximum at some M, which corresponds to
the most compact stable stellar configuration. The mass M, of
this configuration is the maximum NS mass, for a given
equation of state. Stellar models with a higher central density
are usually unstable (with respect to collapsing into a black
hole) and cannot exist for a long time. Using a set of NS
models, one can construct a ‘mass—radius’ diagram which
depends strongly on the equation of state in the NS core. The
softer the equation of state, the more compact NS, and the
lower the maximum mass. For instance, this mass ranges
from 1.4 to 1.6 M, for different soft equations of state; from
1.6 to 1.8 M, for moderate equations of state, and from 1.8 to
3M, for stiff equations of state. The problem of maximum
NS mass is crucial for the identification of black holes in
binary systems [38].

The equation of state in the NS cores can be studied by
confronting theory with observations in different ways. The
majority of methods are based on the determination (con-
straint) of NS mass and/or radius and comparison of these
observational results with the mass-radius diagrams for
different equations of state (see, e.g., Ref. [1]). Unfortunately,
no absolutely decisive arguments have been given so far in
favor of the stiff, moderate or soft equations of state. One can
definitely rule out only the ultra-soft equations of state which
give a maximum NS mass lower than 1.44 M, the mass of the
Hulse—Taylor pulsar (PSR 1913+ 16), which is the most
massive known star in close double neutron-star binaries
(where the NS masses are determined very accurately). In this
review, we will discuss another method to explore properties
of superdense matter — by NS cooling.

2.2 Neutrino emission

About 20s after its birth, a NS becomes transparent for
neutrinos [1] generated in its interior. Leaving the star,
neutrinos carry away energy and cool the star. Therefore, a
study of neutrino reactions is important for NS cooling
theories. The most powerful neutrino emission is produced
in the NS core. Thus we will not discuss the neutrino reactions
in the NS crust. A detailed description of these can be found,
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for instance, in the review article by Imshennik and Nadyoz-
hin [39] as well as in Refs [40—45]. Typical neutrino energies
are much higher than their assumed rest mass energies;
therefore, neutrinos can usually be considered as massless
particles.

There are many neutrino reactions in the NS core (see,
e.g., Refs [1, 21]). Their efficiency is determined by the
equation of state of matter which is poorly known (see
above). For certainty, we will not consider exotic models of
strange matter, pion or kaon condensates, but outline the
main neutrino reactions in npe matter. A more detailed
analysis of these reactions, particularly in the presence of
nucleon superfluidity, is given in Sections 4—6.

2.2.1 Modified Urcaprocesses. Startingfrom theclassicalarticle
by Chiu and Salpeter [46] these processes have been treated as
the main neutrino generation mechanism for standard NS
cooling. Cooling is called standard provided very powerful
neutrino reactions are absent, like the direct Urca process or
analogous processes in exotic models of dense matter.

The modified Urca reaction is similar to the familiar
reactions of beta decay and beta capture, but involves an
additional spectacular nucleon. In the npe-matter, the reac-
tion can go through two channels

n+n—on+pt+e+ve, n+pt+e—n+n-+ve; (1)
n+p—p+ptetve, ptpte—n+p+ve, (2

which we define as the neutron and proton branches of the
modified Urca process, respectively.

The spectacular nucleon is needed to conserve the
momentum of reacting particles. The familiar beta-decay
and beta-capture reactions (called the direct Urca process
discussed below) are forbidden (strongly suppressed) in the
outer NS core. The suppression is due to the relatively low
fractions of electrons and protons, owing to which the Fermi
momenta of n, p, and e do not obey the ‘triangle rule’,
PF, < PF, + PE,, required for momentum conservation (the
momenta of emitting neutrinos p, ~ kgT/c can be neglected:
they are determined by the temperature of matter, 7, and are
much smaller than the momenta of other particles; here kg is
the Boltzmann constant). The neutrino energy emission rate
(emissivity) Q™™ in the neutron branch (1) of the modified
Urca process for p ~ p, can be estimated as [12] Q™M™ ~
~10T§ erg em™3 s7!, where Ty = T/10° K. The proton
branch is nearly as efficient: QMP) ~ QM1) (Section 5.1).

2.2.2 Neutrino bremsstrahlung due to nucleon—nucleon scatter-
ing. The standard neutrino luminosity is also determined by
the processes of neutrino bremsstrahlung radiation in
nucleon—nucleon collisions

n+n—n+n+v+v, n+p—n+p+v+v,
p+p—p+p+v+yV, (3)

allowed throughout the NS core. Here v means a neutrino of
any flavor (ve, vy, v¢). In normal (non-superfluid) matter the
bremsstrahlung processes [12] are weaker than the modified
Urca process: QNN ~ (1017 -102)T'§ erg cm™3 s~!. How-
ever, they can be important in superfluid matter (Section 5).

2.2.3 Direct Urca process. As mentioned above, the sequence
of beta-decay and beta-capture reactions,

n—pt+e+ve, pte—n+ve, 4)

called the direct Urca process, is forbidden in the outer NS
core due to insufficiently high fractions of e and p. It had been
thought for a long time that the process is also forbidden in
the inner NS core.

However, process (4) becomes allowed [19], if the fraction
of protons (among all baryons) x, = n,/n, exceeds some
critical value x, = x.. In npe-matter, this happens for
PF, < 2pE,, which gives x. =1/9 =0.111. If muons are
present for the same number density of baryons ny, the proton
fraction appears to be slightly higher than in the npe matter,
and the electron fraction slightly lower. In this case, x. is
higher and reaches 0.148 for relativistic muons [19].

In the simplest model of superdense matter as a gas of
non-interacting Fermi particles [1] the proton fraction is not
high: x, < x. for any density. However, this may not be so for
realistic equations of state. This circumstance was first out-
lined by Boguta [47]in 1981 but his article was unnoticed for a
long time.

It was the paper by Lattimer et al. [19] which initiated wide
discussion of the direct Urca process. The authors showed
that, for many realistic models of matter, x;, slightly exceeded
X, at densities several times higher than the standard nuclear
matter density. Therefore, the nucleon direct Urca process
can be allowed in the inner cores of rather massive NSs.
Moreover, practically all equations of state in the inner stellar
core, which predict the appearance of hyperons, open direct
Urca reactions involving hyperons [20].

According to Ref. [19] the neutrino emissivity in the
reaction (4) is Q) ~ 107§ erg cm 3 s~!. For T ~ 10° K,
the direct Urca process is about 5—6 orders of magnitude
more efficient than the modified Urca. Therefore, sufficiently
massive NSs suffer enhanced cooling (Section 7).

In a series of papers initiated by Voskresensky and
Senatorov [48, 49] direct Urca type neutrino reactions have
been studied for models of dense matter with highly polarized
pion degrees of freedom. Pion condensation in this matter
takes place at p ~ p, and is very efficient. Even for lower p,
before the condensation occurs, the neutrino emissivity
appears to be much higher than the standard one due to the
polarizability of pion vacuum. Cooling of NSs with this
equation of state has been simulated recently by Schaab et
al. [50]. We will not consider these models.

2.2.4 Neutrino emission due to Cooper pairing of nucleons. The
onset of nucleon superfluidity switches on a new neutrino
generation mechanism concerned with the creation of Cooper
pairs. The process had been proposed and calculated in the
pioneering article by Flowers et al. [51] and rediscovered
independently by Voskresensky and Senatorov [49, 52] ten
years later. Until recently, the process had been forgotten for
unknown reasons and was not included in NS cooling
simulations. It was Page [53] who ‘recalled’ the process and
introduced it into the cooling theory. Cooling simulations
including this process have been performed recently in several
papers, in particular, in Refs. [50, 54—57]. The process in
question actually represents [56] neutrino pair emission (any
neutrino flavor) by a nucleon N (neutron or proton) whose
dispersion relation contains an energy gap:

N—=N+v4v. (5)
The reaction cannot occur without superfluidity: the emission

of a neutrino pair by a free nucleon is forbidden by energy—
momentum conservation. According to Yakovlev et al. [56]
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the neutrino emissivity due to pairing of neutrons is
QCP) ~ 10?2 T] F(z) erg em™3 s7!, where t = T/ T, Tk is the
critical temperature of superfluidity onset, and F(7) is a
function, which has maximum F ~ 1. The main neutrino
energy release takes place in the temperature range
02T, £ TS T.. The efficiency of the process in this range
can be comparable to or even larger than (Sect. 6.2) the
efficiency of the modified or even the direct Urca processes
suppressed partly by the superfluidity. This determines the
importance of ‘Cooper’ neutrinos for NS cooling. Neutrino
emission due to pairing of protons appears to be much weaker
owing to the smallness of the vector constant of the weak
neutral current involving protons.

2.3 Cooling

Initially a NS cools mainly via neutrino emission from its
core. However, direct detection of the neutrino flux is possible
only during NS birth in supernova explosion. So far this has
been done only once, from the Supernova 1987A in the Large
Magellanic Cloud (see, e.g., Ref. [39]). A powerful neutrino
outburst in a supernova explosion lasts for about 20 s.
Afterwards the neutrino flux decreases rapidly in time.

The cooling of a NS is accompanied by the loss of its
thermal energy which is mainly stored in the stellar core. The
energy is carried away through two channels: first, by
neutrino emission from the entire stellar body (mostly from
the core), where the most powerful neutrino reactions take
place, and second, by heat conduction through the internal
stellar layers towards the surface, and further, by thermal
emission of photons from the surface. The neutrino cooling
dominates at the initial cooling stage (see below), while the
photon cooling dominates later, when the neutrino luminos-
ity becomes weak (it fades faster than the photon luminosity
with decreasing temperature).

From a mathematical point of view, the cooling simula-
tion reduces to solving the heat diffusion equation within the
star [58] with account for the volume (neutrino emission) and
surface (photon emission) energy sinks. As a rule, one
considers one-dimensional diffusion along the radial coordi-
nate in a spherically symmetric star. In about ¢ 2 10>— 103 yr,
owing to the high thermal conductivity of the internal layers,
a wide, almost isothermal region is formed within the entire
core and the main fraction of the crust. In this case, cooling
simulations are considerably simplified, being reduced to
solving the global thermal-balance equation: the loss of the
thermal energy (determined by the total heat capacity) is
governed by the neutrino and photon luminosities of the star.
This approach is described and used in Section 7.2. Accord-
ingly the main elements of the cooling theory are: (1) NS heat
capacity, (2) neutrino luminosity, (3) dependence of the
photon luminosity on internal temperature (determined by
the thermal conductivity of the outermost stellar layers). The
first two elements are discussed in detail in this review.

The character of cooling depends on many parameters:
the equation of state of internal layers, the superfluidity of
nucleons in the stellar core, NS mass, magnetic field, the
chemical composition of the surface layers, etc. Confronting
the cooling theory with observations enables one, in principle,
to constrain these parameters. In this review we discuss the
constraints on the critical temperatures of neutron and
proton superfluidities in NS cores.

While simulating NS cooling one calculates cooling curves,
the dependence of the effective stellar surface temperature 7
on stellar age 7. The effective temperature defines the photon

luminosity: L, = 4nR*¢ T2, where ¢ is the Stefan—Boltz-
mann constant. The luminosity LS, as detected by a distant
observer with account for the effects of General Relativity, is
related to the local luminosity L, as L* = L[l — (Rg/R)].
Here R, =2GM/c? is the gravitational NS radius. The
effective temperature of thermal radiation 7,°, detected by a
distant observer, is related to the local temperature T, by
T =Tsy/1 — (Rg/R).

Figure 2 shows typical cooling curves for (non-superfluid)
NSs of different masses (from Ref. [5], with the permission of
the authors). The NS models are based on an equation of state
which permits direct Urca processes in the cores for
M > 1.35M,. The stars with lower mass undergo standard
cooling.

6.6

log 7*, K

0 1 2 3 4 5 6 7
logt, year

Figure 2. Redshifted surface temperature 7° versus stellar age ¢ according
to Page and Applegate [5] for non-superfluid NS models of different mass.

If the direct Urca is allowed in the stellar core, the star
cools much faster than that with the standard neutrino
luminosity. Typical cooling times ¢ ~ T/T can be estimated
from the thermal balance of a plasma element in the stellar
core: t ~ CT/Qy. Here, Q, is the neutrino emissivity, and C'is
the specific heat capacity. Using the heat capacity (Sect. 3.3)
of an ideal degenerate gas of neutrons at p = p, and an
appropriate neutrino emissivity from Sect. 2.2, one obtains
(see, e.g., Refs [1, 59]): tP) ~ 1 min/T§, M ~ 1 yr/T§. Itis
seen that the direct Urca process decreases the internal stellar
temperature to 10° K in #) min, and down to 10® K in several
days. For the standard neutrino emissivity, the cooling time
™) is about 1 yr and 10° yr, respectively.

These estimates describe the temperature variation in the
stellar core at the initial cooling stage. The crust cools initially
much slower since its own neutrino energy losses are relatively
small. Sufficiently low thermal conductivity of the crust
produces thermal insulation between the crust and the core.
Thus, the core and the crust cool independently at the initial
stage, and the NS surface radiation carries no information on
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the thermal state of the core (the almost flat initial parts of the
cooling curves in Fig. 2).

The cooling wave from the rapidly cooling core reaches
the stellar surface in 10— 1000 yr (see, e.g., Refs [60, 61]), and
the surface temperature T falls sharply (Fig. 2). In the course
of the enhanced cooling 7y drops by almost an order of
magnitude in several years, which decreases the photon
luminosity by a factor of ~10*. For the standard cooling,
the temperature fall is not so significant and lasts ~ 102 yr.

After the thermal relaxation in the NS interior is over the
neutrino luminosity from the core remains higher than the
photon surface luminosity. However, at this stage the core
controls the surface temperature. This is the second relatively
flat part of the cooling curve. The internal temperature
exceeds the surface temperature by more than an order of
magnitude; the main temperature gradient takes place in the
outermost layers of the outer crust.

Finally, a rather old star appears to be at the photon
cooling stage. The neutrino luminosity becomes much smaller
than the photon one, and the cooling curves turn out to be
much steeper (Fig. 2). The change of the cooling regime is
associated with the different temperature dependences of the
neutrino and photon cooling rates. Let us recall that the
neutrino emissivity is Q® T for the direct Urca process,
and Q™M™ T8 for the modified Urca process (Section 2.2).
The photon luminosity falls down much more weakly with
decreasing temperature, as 722 [62]. Simple estimates show
that the time ¢, of transition to the photon cooling stage is
mainly determined by the NS heat capacity and by the
temperature dependence of the neutrino energy losses;
typically, ¢, ~ 10° yr. The internal temperature of a star of
age t, is mainly determined by the efficiency of the neutrino
energy losses and by their temperature dependence.

The appearance of superfluidity in the NS core changes
drastically the cooling process. This is discussed in the
subsequent Sections 3—8. We will study systematically the
effects of superfluidity on the heat capacity and neutrino
luminosity of NSs. This will allow us to ‘calibrate’ theoretical
cooling curves and use cooling NSs as ‘thermometers’ for
measuring nucleon critical temperatures in their cores. We
will see that the nucleon superfluidity can either enhance or
slow down cooling (depending on parameters) and it strongly
reduces the difference between the enhanced and standard
cooling. We will analyse observations of thermal radiation
from cooling NSs and show that the observational data are
difficult to explain without assuming the existence of super-
fluidity in the NS cores.

3. Superfluidity and heat capacity of neutron
star cores

3.1 Nucleon superfluidity
The theory of electron superconductivity in metals was
developed by Bardeen, Cooper and Schrieffer (BCS) [63] in
1957. Superconductivity is explained by Cooper pairing of
electrons caused by a weak attraction due to the electron—
phonon interaction. The superconducting state appears with
decreasing temperature as a result of the second-order phase
transition; typical critical temperatures are 7. ~ 1 —10 K. For
T < T, the dispersion relation of electrons contains an
energy gap A, with T < T, at 4 ~ kgT..

A year after the publication of the BCS theory Bohr,
Mottelson and Pines [64] suggested that a phenomenon much

like superconductivity could appear in systems of nucleons in
atomic nuclei. Cooper pairing of nucleons could occur due to
nuclear attraction. It was expected that the gap in the nucleon
spectrum, 4 ~ 1 MeV (T, ~ 10'° K), was many orders of
magnitude larger than for electrons in metals. Later the
presence of pair correlations of nucleons in atomic nuclei
and the associated energy gap in the nucleon spectrum was
investigated theoretically and confirmed experimentally
(Nobel Prize of Bohr, Mottelson and Reynoter in 1975).

Migdal [65] was one of the first who applied the BCS
theory to atomic nuclei. He noticed also that neutron super-
fluidity caused by nuclear forces could occur in neutron
matter of the inner NS layers where critical temperatures
T. ~ 10'° could be expected.

BCS equations which describe symmetric nuclear matter
in atomic nuclei and asymmetric neutron-rich NS matter have
much in common but have also some differences. For
instance, pairing in atomic nuclei takes place in the singlet-
state of a nucleon pair. In this case, the energy gap is isotropic,
independent of the orientation of nucleon momentum. On the
other hand, one can expect triplet-state pairing in NS matter
(see below) which leads to the anisotropic gap.

Calculations of the energy gap in symmetric nuclear
matter have been carried out since 1959, starting from the
classical papers by Cooper, Mills and Sessler [66] and Migdal
[65]. Without pretending to give a complete description of this
activity (see, e.g., Ref. [67], for a review) let us mention the
early articles [68—71] in which the gap in the nucleon
spectrum was studied for different model potentials [72] of
nucleon—nucleon interaction. It was shown by the middle of
the 1960s that the gap was extremely sensitive to the repulsive
part of the potential and to the effective masses of nucleons in
nuclear matter. These conclusions are qualitatively correct for
NSs (see below).

It is well known that the BCS theory is also used to
describe superfluidity in liquid *He. The foundation of the
theory was built in Ref. [66] mentioned above. Superfluidity
in 3He (caused by interatomic attraction) is quite different
from that in nucleon matter; the critical temperature in *He at
normal pressure is as small as 2.6 mK. However, there is one
important similarity: pairing can occur in the triplet state of
interacting particles (with orbital momentum /), which leads
to an anisotropic gap. The BCS equations are similar in these
cases. The first article devoted to triplet-state pairing was
written by Anderson and Morel [73]. While deriving the
equation for the anisotropic gap the authors overlooked the
contribution from one of three triplet spin states. This
inaccuracy was corrected in Ref. [74].

Let us outline the microscopic theories of superfluidity in
NSs. Five years after Migdal [65], Ginzburg and Kirzhnits
published a brief article [75] where they estimated the gap
produced by the singlet-state pairing of neutrons at a density
p =103-10" g cm~3 and obtained 4 ~ 5-20 MeV. A very
serious step was made by Wolf [76] in 1966. He showed that
the singlet-state neutron pairing takes place in the inner NS
crust (p S py), but disappears in the core, since the singlet-
state nn-interaction becomes repulsive in high-density matter.
The number density of protons in the NS core is much smaller
than the number density of neutrons (Section 2.1). Accord-
ingly the single-state pp-interaction is attractive there and
leads to proton pairing.

Before the discovery of pulsars in 1967 the theory of
superfluidity in NSs was developing rather slowly. A detailed
review of ‘pre-pulsar’ articles was given by Ginzburg [77]. The
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discovery of pulsars initiated a great interest in the theory.
Baym, Pethick and Pines [78] analyzed the macroscopic
consequences of neutron superfluidity (rotation of the super-
fluid component in the form of quantized vortices) and
proton superfluidity — superconductivity (splitting of the
internal stellar magnetic field into Abrikosov magnetic flux
tubes). This paper made the foundation of the modern theory
which explained pulsar glitches by the interaction of normal
and superfluid components of matter inside NSs (see, e.g.,
Ref. [4]).

A very important contribution to the theory was made in
the paper by Hoffberg et al. [79] published in 1970. The
authors showed that the triplet-state 3P, interaction of
neutrons at p 2 p, was attractive. Thus, triplet-state neutron
superfluidity with an anisotropic gap can occur in the NS
core. The authors performed the first calculations of the
critical temperature of the triplet-state neutron superfluidity
in NSs.

The paper [79] was followed by many others, where the
theory was developed and nucleon critical temperatures in
NSs were calculated. Superfluidities of various types have
been considered using different model potentials of the
nucleon—nucleon interaction. Some authors have made use
of the potentials renormalized with account for polarization
properties of matter on the basis of various many-body
theories. A comparative analysis of different approaches has
been done, for instance, in Refs [80—83, 67]. A detailed review
was written by Takatsuka and Tamagaki [84] not long ago.
Many articles have been devoted to the triplet-state super-
fluidity of neutrons in the NS cores (see, e.g., Refs [79, 81, 83 —
93]). Let us mention model calculations [94] of the triplet-state
neutron pairing in magnetized NS cores. According to these
calculations, the magnetic field B 2 10'® G makes the triplet-
state superfluidity with the nodes at the Fermi-surface
energetically preferable to the familiar triplet-state super-
fluidity without nodes (Section 3.2). Singlet-state proton
superfluidity in the NS cores has been considered thoroughly
by many authors (e.g., Refs [67, 80, 83, 84, 89,93, 95-98]). In
Ref. [99] singlet-state proton superfluidity in the NS cores was
studied and maximum densities at which this superfluidity
disappears were estimated. Let us mention also Refs [100,
101], where the possibility of neutron—proton Cooper pairing
in uniform nucleon matter was analyzed. This pairing is
possible in symmetric nuclear matter but does not occur in
NSs due to the large difference of neutron and proton Fermi
momenta. Many articles (e.g., Refs[67, 79, 80, 82—84, 97, 98,
102—-110]) have considered the singlet-state pairing of free
neutrons in the inner NS crust. Nucleons within atomic nuclei
in the inner crust can also suffer pairing which is, however,
weaker than for free neutrons (see, e.g., Refs [104, 109 —112]).

Although we will not consider exotic models of NS cores
(Section 2.1), let us mention that superfluidity is possible in
these models as well. For instance, Takatsuka and Tamagaki
[84] reviewed calculations of neutron and proton superfluid
gaps in pion condensed matter. They also obtained new
results in this field [91—-93]. The same authors [113] studied
the nucleon superfluidity in the presence of kaon condensa-
tion. The pion or kaon condensates mix strongly neutron and
proton states which may induce triplet-state pairing of quasi-
protons. Some authors have discussed superfluidity in quark
matter (e.g., Refs [30, 33, 114, 115]). If hyperons appear in
npe-matter, they can also be in a superfluid state [116].
Electrons and muons, which interact via Coulomb forces,
can, in principle, be superfluid as well. However, the

corresponding critical temperatures are too low to be of
practical interest. For instance, according to an estimate by
Ginzburg [77] the critical temperature of degenerate electrons
at p 2 100 g cm~3 does not exceed 1 K, while the internal
temperature of a cooling NS of age ¢ < 10° does not fall below
10° K (Sect. 7).

Let us summarize the properties of nucleon superfluidity
in the cores and crusts of NSs with the standard (npe)
composition.

(1) Singlet-state neutron superfluidity exists in the inner
NS crust and disappears at the density p ~ p,, at which an
effective neutron—neutron singlet-state attraction transforms
into repulsion. The density dependence of the critical tem-
perature T, on p is maximum at a subnuclear density. The
maximum values of T, range from 108 to 10!, for different
models of dense matter.

(2) Triplet-state neutron superfluidity appears in the NS
core at p X p, owing to an effective attraction between
neutrons in the triplet state. The density dependence of the
appropriate critical temperature, as a rule, is maximum at
supranuclear density. The maximum values of T, vary from
108 to 10'° for different microscopic models.

(3) Protons in NS cores can suffer singlet-state pairing.
The dependence T¢,(p) has usually maximum at a supra-
nuclear density, and the maximum values of T¢, range from
108 to 10'° for different models of matter.

(4) The critical temperature is very sensitive to the strength
of the repulsive core of the nucleon—nucleon interaction (see,
e.g., Refs [86, 102, 84]). T, increases strongly with core
softening, i.e., with increasing attraction between nucleons.
Even a weak additional attraction (e.g., due to the inclusion of
coupling between the 3P, and >F, states for the triplet-state
pairing of neutrons: see Refs [87, 84]) may increase 7. by
several orders of magnitude. Generally, the superfluidity is
stronger for a softer equation of state.

(5) The critical temperature falls rapidly with decreasing
effective mass of nucleons in dense matter (see, e.g., Refs [84,
86,95]), i.e., with decreasing density of state of nucleons at the
Fermi surface. If the effective mass is sufficiently low
(my < 0,5my) the superfluidity may entirely disappear.

(6) The critical temperature depends strongly on the
method of description of many-body (in-medium) effects.
For instance, the in-medium effects for neutrons in the NS
crusts decrease T¢, typically by several times (e.g., Refs [82,
84, 103, 107]).

For illustration, in Fig. 3 we present the critical tempera-
ture of the triplet-state neutron superfluidity and the singlet-
state proton superfluidity obtained by different authors.

The HGRR curve has been calculated by Hoffberg et al.
[79] for neutron superfluidity using the Tabakin [117] model
of the nucleon—nucleon potential which reproduces quite well
experimental phases of nucleon scattering at energies
< 320 keV. The in-medium effects have been neglected in
Ref. [79]; the effective neutron mass has been set equal to its
bare mass. The TT-curve has been calculated by Takatsuka
and Tamagaki [86] for the neutron superfluidity under the
same assumptions but using the one-pion-exchange model of
nucleon interaction (OPEG 30— 1) with a somewhat harder
core. This lowers T¢,. The solid AO-curve was obtained by
Amundsen and Ostgaard [81] for the neutron superfluidity
using a similar one-pion-exchange approach (OPEG), but the
effective neutron mass was determined self-consistently and
appeared to be lower than the bare neutron mass. This
additionally lowers T¢,. The BCLL-curve is a result of recent
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Figure 3. Critical temperatures of triplet-state neutron superfluidity (solid
lines) and singlet-state proton superfluidity (dashed lined) versus density
according to different authors: HGRR — [79], TT — [86], CCY — [95],
T —1[96], AO —[80, 81], BCLL — [83].

calculations by Baldo et al. [83] using an empirical nucleon
potential (Argonne v14) which reproduces accurately labora-
tory data on nucleon scattering. The potential and neutron
mass have not been renormalized to account for the in-
medium effects. As a result, the values of T, are high again.

The dashed CCY curve shows the results by Chao et al.
[95] for proton superfluidity using the simplified Serber
potential which describes satisfactorily the experimental
phases of singlet-state nucleon—nucleon scattering. The effec-
tive proton mass has been determined self-consistently. The T
curve presents the results by Takatsuka [96] obtained under
the same assumption but using a more realistic OPEG
potential. The dashed AO curve was calculated by Amundsen
and Ostgaard [80] using the same one-pion-exchange
approach but another method of evaluation of the effective
proton mass which leads to noticeably different critical
temperatures T¢,. Finally, the dashed BCLL curve was
derived by Baldo et al. [83] under the same assumptions as
the solid BCLL curve. A neglect of polarization effects leads
to the high critical temperature T,.

Let us emphasize the large scatter of Tc, and T¢,. For
instance, the BCLL curves [83] mentioned above give very
high critical temperatures in matter of supranuclear density
while, for instance, the calculations by Takatsuka and
Tamagaki [96] indicate a significant decrease of the critical
temperatures at densities of several p,, at which the direct
Urca process is open. Under these conditions, while analyzing
the effects of superfluidity, we will not use any specific
microscopic results but will treat 7., and T¢, as free
parameters.

3.2 Energy gaps and critical temperatures

Thus, the cases of the 'Sy or 3P, pairing in the NS cores are of
special interest. The 3P, pairing in npe matter occurs mainly
in the system of neutrons. While studying this pairing one
should take into account the states with different projections

my of the total pair momentum onto the quantization axis:
|my| =0, 1, 2. The actual (energetically favorable) state may
be a superposition of states with different m, (see, e.g., Refs
[81, 83]). Owing to uncertainties of microscopic theories this
state is still unknown; it depends possibly on density and
temperature. In simulations of NS cooling, one usually
considers the triplet-state pairing with m; = 0 (excluding the
recent paper [118]). Below we will consider the *P, super-
fluidities with m; = 0 and |m;| = 2, since their effects on the
heat capacity and NS neutrino luminosity are qualitatively
different.

For certainty, we will analyze the BCS superfluidity for an
ensemble of almost free (quasi-)nucleons. The superfluidity
types 'S, 3P, (m; = 0) and *P, (Jm,| = 2) under study will be
denoted by A, B and C, respectively (Table 1). The critical
temperatures will be treated as free parameters.

Table 1. Three superfluidity types.

Superfluidity type A F(9) kpTc/4(0)
A 1S 1 1 0.5669
B 3P,y(m, =0) 12 1+3cos?y  0.8416
C 3Py(lmy| =2) 32 sin?d 0.4926

The superfluidity onset is accompanied by the appearance
of the energy gap 6 in momentum dependence of the nucleon
energy &(p). Near the Fermi surface (|p — pr| < pr) one has
(e.g., Ref. [119])

e=u—\/O+n% p<pr e=p+\/0+n’ p=pr.
(6)

Here, n = vr(p — pr), vr and pg are the nucleon Fermi
velocity and momentum, respectively, u is the chemical
potential; it is assumed that 6 < p. In the cases of study,
0% = A*(T)F(¥9), where A(T) is an amplitude, which deter-
mines temperature dependence of the gap, F(¢) describes the
dependence of § on the angle ¥ between the quantization axis
and particle momentum p. The quantities 4 and F are
determined by the superfluidity type (Table 1). In case A the
gap isisotropic, = 4. In cases B and C the gap is anisotropic
(depends on 19). Let us notice that in case C the gap vanishes at
the Fermi-sphere poles at any temperature (since
F(0) = F(n) = 0), i.e., the superfluidity does not affect the
nucleons which move along the quantization axis.

The gap amplitude A(7") is determined by the BCS
equation (see, e.g., the textbook [119] or Ref. [85]) which can
be written as

where 49 = 4(0), dQ is a solid angle element in the direction
of p, f=(1+exp z)~ ! is the Fermi — Dirac distribution, 4 is a
numerical coefficient (Table 1),

R L 2 2 __n :i
=T sign(x)v/x? + 2, x Wl T (8)

Using Eqn (7) one can easily obtain the values of kg7./4¢
presented in Table 1. It is convenient to introduce the
variables

A(T)

T e T

T
r:i. 9)
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The dimensionless gap amplitude v describes the temperature
dependence of the gap. It is determined by the superfluidity
type and the dimensionless temperature 7. In case A the
amplitude v corresponds to the isotropic gap, in case B it
corresponds to the minimum and in case C to the maximum
gap at the Fermi surface. In this notation, the dimensionless
gap y has the form:

ya =va, yg=vgV1+3cos?V, yc=wvcsind.

Using Eqn (7) one can obtain the asymptotes of the gap
amplitude near the critical temperature and in the limit of the
so called strong superfluidity (7 < T.). For instance, at
T— T, T< T, (t — 1) we have (see, e.g., Refs [119, 120]):
v=fv1 —1,where i, =3.063, g =1.977, fc = 3.425. For
T < T, we obtain v = Ay /(kpT. 7). Levenfish and Yakovlev
[121, 120] calculated v = v(t) for intermediate t and proposed
analytic fits of the numerical data:

0.157 1.764
va=VI1—1(1456 — —+ ,
VT

T

(10)

vg = V1 71(0.7893+@),

/] _ 44
ve = T (2,030 — 0.4903¢* + 0.17274%) .
T

(1)

These fits will be useful for evaluating the heat capacity and
neutrino luminosity in the superfluid NS cores.

The analytic fits presented here and below reproduce the
numerical data with mean errors of about 1-2%, while the
maximum error does not exceed 5%. This fit accuracy is more
than sufficient for implications to NS cooling. Our fits also
reproduce various asymptotes of the quantities under study.

Notice that for the triplet-state superfluidity with |m,| = 1
or for a triplet-state superfluidity described by superposition
of states with different ||, the anisotropic gap 6 depends not
only on ¢, but also on the azimuthal angle ¢ of nucleon
momentum p. A study of the effects of such superfluidity on
the heat capacity and neutrino luminosity is complicated and
has not been performed yet.

3.3 Heat capacity of superfluid neutron star cores
Consider the npe matter of the NS cores. The specific (per unit
volume) heat capacity is equal to the sum of partial heat
capacities of all particle species j: C= Z;‘Cﬁ where
j=n,p,e. Since the particles are strongly degenerate, the
heat capacities at constant volume and pressure are nearly the
same [119] and we make no difference between them. A
partial heat capacity is determined by the standard thermo-
dynamic formula [119]:

2 df;
Cj_(2nh)3J dPi(ﬁf—H/)T];v (12)
where ¢; and p; stand for the particle energy and momentum,
respectively, y; is the chemical potential, and f; is the Fermi-
Dirac distribution.

In our case, the electrons constitute an almost ideal,
strongly degenerate, ultra-relativistic gas. Accordingly,

mipr kg T

2/3
C. = ~ 5.67 x 1019<ﬁ) Ty (erg em™ K1),
€ 3h3 n() 9 ( g )

(13)

where m} = u./c* ~ pg./c, pr. and ne denote, respectively,
the electron Fermi momentum and number density,
ny = 0.16 fm =3 is the standard nucleon number density in
atomic nuclei. In the presence of muons, one should add their
partial heat capacity C|, to the total heat capacity; C. is similar
to C, with the only difference that muons may be non-
relativistic.

Neutrons and protons (f = N = n and p) in the NS cores
constitute a non-relativistic, strongly non-ideal Fermi-liquid
(Section 2.1). The partial heat capacity (12) of normal
nucleons is:

my KT
Cny = 7N[;;N; 2
s, (a7
~ 1.61 x 102 =N (—N> Ty (erg cm ™ K~'). (14)
mnN \ Ny

Here pr, is the nucleon Fermi momentum determined by the
nucleon number density ny, and my is the effective mass of
the (quasi-)nucleon in dense matter. Notice that the main
contribution to the heat capacity comes from nucleons with
energies near the Fermi level, |en — pn| < kg7, which can
participate in processes of energy exchange ~ kgT.

For T < T, Eqn (12) should include the energy gap (6).
Generally, the nucleon heat capacity can be written as

&N :CNOR(T)> (15)
where Cy, is the partial heat capacity of normal nucleons (14),
and the factor R describes the variation of the heat capacity
by the superfluidity. R depends on the superfluidity type and
on the dimensionless temperature 7. Clearly, R(T) =1 for
T>T.(t>1).

A general expression for R is obtained from Eqn (12) by
introducing the dispersion relation (6), dimensionless vari-
ables (8) and by taking into account Eqn (14):

3 o0 dfi(z
R:ﬁJdQJO dx ZT—g(T) . (16)
Notice that the Fermi—Dirac distribution f depends on T
directly as well as functionally, through the dispersion
relation (6). Therefore, df/ dT contains the derivative of the
gap amplitude A(T") with respect to T.

The heat capacity of superfluid Fermi-systems is well
known in the physical literature (especially for the singlet-
state pairing) but not in the astrophysics of NSs. The heat
capacity Ca(T) for case A has been calculated by Miihls-
chlegel [122] and is described in textbooks [119]. Maxwell
[123] proposed a fit of Ca(T) in the temperature range
0.2 T, < T < T.. Anderson and Morel [73] derived an asymp-
tote of Cc at T < T, for superfluidity of type C. Simple
expressions for Ra, Rg and R¢ convenient for evaluating the
nucleon heat capacity in the NS cores were obtained in Ref.
[120] and are given below.

When the temperature falls below the critical value, the
heat capacity suffers a jump produced by latent heat release at
the phase transition. In case A the jump is given by
RA(T,) =2.426 [119], while in cases B and C the jump is
Rp(T.) = Rc(T,) = 2.188. These jumps affect NS cooling
(Section 7.2).

The energy gap in the nucleon spectrum strongly reduces
the heat capacity for temperatures much below the critical
one (T < T,, v — o0). Let us recall, that the main contribu-
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tion into the heat capacity in non-superfluid matter would
come from nucleons with energies |¢ — u| < kg 7. However, in
the low-temperature limit 7> T, for all nucleons in cases A
or B and almost for all nucleons (excluding a small fraction of
particles near the poles of the Fermi sphere) in case C the gap
0 is much larger than kg7. Therefore, the ‘heat-capacious’
nucleons with energies |¢ — u| < kg7 are either absent or
almost absent, which suppresses the heat capacity. Accord-
ingly, we have the asymptotes:

C3WV2 5, _3.149 1.764
RA —mv exp(fv) —Wexp 77 s
3 0.7781 1.188
Rp = £v2 exp(—v) = ——5—exp (— > ,
T T T
Tn? )
Rc :ﬁ:3'353r . (17)

Here and hereafter we set v = vp, v = vg or v = vc in the
factors R, labeled by indices A, B or C, respectively. With
decreasing temperature, Ro and Rp are reduced exponen-
tially, while R¢ is reduced much slower, proportionally to 72.
The exponential reduction is associated with an exponentially
small ‘efficiency of excitation’ of quasi-nucleons near the
Fermi surface in the presence of a large gap. In the case of
the heat capacity, this effect strongly reduces ‘heat exchange’,
but, generally, all nucleon reactions (transitions) are reduced.
A small exponent is absent in case C because the gap
oc = 0c(T,¥) vanishes for nucleons at the Fermi-sphere
poles. The superfluidity disappears near the poles, and these
nucleons have ‘normal’ heat capacity. However the fraction
of these nucleons decreases proportionally to 72, which leads
to a power-law reduction of the heat capacity of the nucleon
liquid as a whole.

The results of numerical calculations of R, as well as the
asymptotes for v — 0 and v — oo are described by the simple
fit expressions [120]

2.5
Rp = (0.4186 + \/(1.007)2 + (0.50101})2)

x exp<1.456 —1/(1.456)* + v2) ,

2
Rp = (0.6893 + \/ (0.790)* + (0.28241;)2)

X exp<1.934 —/(1.934)* + UZ) ,

2,188 — (9.537 x 107%0)” + (0.1491v)* (8)
€71 (0.28460)2 + (0.013350)* + (0.18150)°

Equations (18), combined with Eqns (11), enable one to
evaluate easily the factor R as a function of the dimensionless
temperature 7.

The dependence of R on 7 for superfluidity types A, B, Cis
shown in Fig. 4. The factors Rx and Rg as functions of the
dimensionless gap amplitude v are close to each other which is
illustrated in Fig. 5.

In simulations of NS cooling before the publication of
articles [121, 120] as far as we know, one considered the
superfluidity of A or B type and used the simplified factors of
the form R* =exp(—u), where ua = oa/(kgT) = 1.764/x,
U = Omax/ (kg T) = 2.376/7, dmax = 205(0) is the maximum
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Figure 4. Factors R, which describe the variation of the heat capacity by
superfluidity, versus 7/T¢. The letters near the curves show the super-
fluidity type. The dashed curves A* and B* present simplified factors R*
for superfluidities A and B, which were commonly used in applications
earlier (see text).
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Figure 5. Factors R (curve A) and Rg (curve B), asin Fig. 4, but versus the
dimensionless gap amplitude v.

energy gap op(0,9) as a function of ¢ at T'= 0. These factors
were introduced from physical considerations (see, e.g., Ref.
[5]) based on the suggestion made in Ref. [123]. As seen from
Fig. 4, the simplified factors do not reproduce the heat
capacity jump at T = T, and strongly overestimate reduction
of the heat capacity at T < T.. Indeed, the correct asymptotes
in the limit T < T, contain large pre-exponents omitted in the
simplified expressions. In addition, the factors Rg and Ry
differ by exponent arguments. Instead of the correct argu-
ment vg = omin/(ksT) [see Eqn (17)] the simplified factor
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contains the argument vj = Omax/(kBT) = 20min/ (ks T),
which is twice larger. As a result, for instance, at 7= 0.1 T,
the exact factor Ry exceeds the simplified factor R} by about
three orders of magnitude, while the exact factor Ry exceeds
Ry, by seven orders of magnitude.

Although the local heat capacities of particles are deter-
mined by a given equation of state, the relative contribution
of n, p and e to the total heat capacity of a non-superfluid NS
core does not depend strongly on the equation of state [124].
The neutron heat capacity is about 3/4 of the total, the proton
heat capacity is about 1/4 of the total, and the electron
contribution is only about 5%. Therefore, a strong super-
fluidity of n (with normal p) reduces the NS heat capacity by a
factor of 4. In the opposite case (strong proton superfluidity
and normal neutrons) the total heat capacity is reduced only
by ~ 25 %. If neutrons and protons are strongly superfluid at
once, only ~ 5% of the heat capacity of the normal core
survives. In Section 7.2 we will see that the asymmetry of the
nucleon composition of the NS cores affects the NS cooling.

4. Reduction of direct Urca process by nucleon
superfluidity

4.1 Direct Urca process in non-superfluid matter

The neutrino cooling of a NS with the standard nuclear
composition is determined by the direct Urca process (4)
involving neutrons and protons; the process is allowed [19] for
many realistic equations of state in the inner NS core. In the
outer core, the process is forbidden by momentum conserva-
tion of reacting particles (Section 2.2).

The process (4) consists of the direct and inverse reactions.
Under the beta-equilibrium condition, their rates are equal,
and it is sufficient to calculate the neutrino emissivity in the
first reaction and double the result. The total emissivity will
be labeled by the superscript (D); in a normal (non-super-
fluid) matter, it is given by [19] (i = ¢ = kg = 1):
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where p; is the nucleon momentum (j = 1 corresponds to
neutron and j = 2 to proton), p, and & are the electron
momentum and energy, respectively, p, and ¢, are the anti-
neutrino momentum and energy, the delta function 6(Er — E;)
describes energy conservation, and J(Py — P;) describes the
conservationof momentum of particlesin theinitial (i) and final
(f) states. Furthermore, £ stands for the product of Fermi—
Dirac distributions or corresponding blocking factors of
nucleons and electron, and |M|* is the squared reaction
amplitude. Summation is over initial and final spin states. The
step function O forbids the reaction in matter of not too high
density (Section2.2): @ = 1ifpg,, pr,, pr, satisfy the ‘triangle
condition’ and ® = 0 otherwise.

Nucleons and electrons in the NS core are strongly
degenerate and the main contribution to the integral (19)
comes from narrow regions of momentum space near the
corresponding Fermi surfaces. Thus one can set p = pg in all
smooth functions under the integral. For non-relativistic
nucleons, the quantity > ..o |M |* is independent of particle
momenta and can be taken out of the integral. The remaining

integral is evaluated by the standard method of decomposi-
tion of integration over directions and magnitudes of particle
momenta. Introducing the dimensionless variables in accor-
dance with Eqn (8), the neutrino emissivity (19) can be written
as [125]
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The quantity 4 contains integrals over orientations of particle
momenta (j = 1, 2, 3, and 4 corresponds to n, p, € and Ve,
respectively); d€; is the solid angle element in the direction of
p;- All vector lengths p; in the delta-function must be set equal
to the corresponding Fermi momenta. The quantity 7, given
by Eqn (22), includes integration over the dimensionless
energies of the neutrino x, = p,/T = &,/ T and other particles
x; =vr,(p — pr,)/T [see Eqn (8)]; f; = [exp(x;) + 117" is the
Fermi— Dirac distribution. For particles j=2 and 3, we have
transformed [1 — f(x)] — f(x) by replacing x — —x. Finally,
S contains products of the density states at the Fermi surfaces
of n, pande; m; is an effective particle mass, with n; = uﬁ
As shown, for instance, in Ref. [20], the quantity |Af]?,
summed over the spins of final particles and averaged over
the spin of the initial neutron and over the directions of
electron and neutrino momenta is G2F cos20c (]‘V2 —0—3g§),
where G = 1.436x 10=*° erg cm? is the Fermi constant of
weak interaction; f, = 1 and g, = 1.26 are, respectively, the
vector and axial-vector constants for the reaction under
study, and ¢ is the Cabibbo angle (sin ¢ = 0.231).

In the absence of superfluidity, the integrals 4 and I are
standard (e.g., Ref. [1]): Ao =327/ (pr, pr, pr.) and
Iy = 4571%/5040. Thus, the neutrino emissivity of the direct
Urca process in non-superfluid matter (in the standard
physical units) is [20]:
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(24)

Here, as before, ny = 0.16 fm—3.

If muons are available in dense matter, then the muon
direct Urca process is allowed. The emissivity of this process is
given by Eqn (24) with mg replaced by m;,. A similar formula is
valid for the direct Urca processes involving hyperons. Notice
that f, and g, can be renormalized under the action of in-
medium effects. Exact calculation of these effects is compli-
cated. Here and below, for certainty, we will use non-
renormalized values. Notice also that the direct Urca process
is affected by the strong magnetic field, B 2 10'® G [126].
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4.2 Direct Urca process in superfluid matter

The main contribution to neutrino generation in non-super-
fluid matter comes from nucleons with energies
|¢ — | < kgT. The nucleon spectrum in superfluid matter
contains an energy gap which suppresses the reaction. The
essence of suppression is the same as in the case of suppression
of heat capacity by strong superfluidity (Section 3.3). In
contrast to the heat capacity, even a weak superfluidity
usually suppresses the neutrino reactions (excluding the
neutrino emission due to Cooper pairing of nucleons,
Sections 2.2, 6.1).

The expression for the neutrino emissivity in the direct
Urca process can be generalized to the case of superfluid
matter by introducing the energy gap into the &(p;) depen-
dence [see Eqn (6)] for nucleons. Let protons (j = 2) suffer
Cooper pairing of type A, while neutrons (j= 1) suffer
pairing of types A, B or C. In order to incorporate super-
fluidity in Eqn (22) it is sufficient to replace x; — z; [see Eqn
(8)] and introduce averaging over orientations of p;. Then the
emissivity can be written as

1
R N R
0
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dQ :
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where y, = vy, y) is given by Eqn (10),
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dQ is the solid angle element alon§ p;, ¥ is the angle between
p; and the quantization axis; Qg ) is the emissivity (24) in
non-superfluid matter; and R(®) is the factor which describes
the superfluid suppression of the reaction. One formally has
R™®) = 1 for normal nucleons, while R®) < 1 in the presence
of superfluidity. The integrals (25) and (26) have been
calculated in Refs [121, 125] for different combinations of
neutron and proton superfluidities. The results are discussed
below.

4.3 Superfluidity of neutrons or protons
Consideration of the cases of superfluid neutrons or protons
is similar. For instance, let neutrons be superfluid. Then we
can set z; = x5 in Eqns (25) and (26), and R will depend on
one argument v; = v and on the superfluidity type. For
1=T/T, > 1, as mentioned above, R®) = 1. For strong
superfluidity (t < 1, v > 1) the neutrino emission is greatly
suppressed (R < 1). The asymptotes of R®) in the cases of
strong superfluidity of types A, B and C read:
1.764
(=)

D 252 In 0.0163
RfA ) = W\/; v exp(—v) = S5 CXP

O 126 5oy 000123 (LSS
BT sy L P E s R T )
by 6029m

(o) — SiRay = 26347 (27)

The asymptotes of R(AD> and Rgm are seen to be exponential
while the asymptote of RCD) is power-law. The latter circum-
stance is associated with the disappearance of the gap at some
9. Comparing these with the results of Section 3.3, we see that
these asymptotes are similar to the asymptotes of the nucleon
heat capacity in the limit of strong superfluidity.

The asymptotes (27) and numerical values of the integrals
(25) and (26) for intermediate v can be fitted by:

5.5
RD — {0.2312 +/(0.7688)" + <0.1438v)2}

X exp (3.427 —\/(3.427)* + v2> ,

5
R%D) — {0,2546 + \/(0.7454)2 + (0.1284@)2}

X exp (2.701 —\/(2.701)* + v2> ,

0.5 + (0.09226v)*
1+ (0.18210)* + (0.16736v)*

+%exp<l —\/1+ (0.41290)2) .

Equations (28), with account for Eqns (11), enable one to
calculate R™® for any 7. The results are presented in Fig. 6.

RY) =

(28)

Figure 6. Superfluid reduction factors of the direct Urca process versus
t = T/T.. The letters near the curves indicate the superfluidity type (see
Table 1): A, B and C mean superfluidity of neutrons or protons, while AA,
BA and CA mean superfluidity of neutrons and protons.

In simulations of NS cooling prior to publication of the
above results [121, 125] one usually used (e.g., Ref. [5])
simplified factors of reduction of the direct Urca process by
the superfluidity of type A or B. These factors were proposed
in Ref. [123] from simple (and inadequate) consideration.
Comparison of the accurate and simplified factors shows that
the latter factors strongly overestimate the direct Urca
reduction. For instance, for T'= 0.1 T, the accurate factor
R;D> appears to be about four orders of magnitude larger than
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the simplified one, and the accurate factor Rg)) is more than

seven orders of magnitude larger. The difference has the same
nature as the difference of accurate and simplified heat-
capacity factors discussed in Section 3.3.

4.4 Superfluidity of neutrons and protons
Let us consider the reduction of the direct Urca process by the
combined actions of superfluidities of neutrons and protons
of types (AA), (BA) and (CA). In these cases, the reduction
factor R(®) depends on two arguments, v; = vy, and v, = Up.
Calculation of R(®) in the presence of the neutron and
proton superfluidities is complicated; let us consider the
factor R(ADA as an example. Accordin% to Eqns (10) and (25),
for the singlet-state pairing R/Bg(vl,v% =J(v, ) =
J(v2,v1), where y; = v;, y2 = vs. Clearly, RAA)(O,()) =1.1If
both superfluidities are strong (v; > 1 and v, > 1) and
vy — v1 > /U2, the asymptote of the reduction factor is:

1 1/2
R(A?A) = j(U] 5 1}2) = E <§ Uz) exp(—vz)K, (29)
N
K= m(m;‘ + 83v3v7 + 160})
1 :
- gm%(mﬁ +4v3) In <”2 * q) 7 (30)
V1

where s = (v3 — v%)l/z. In the limit v; < v» Eqn (30) gives
K = v3/20, which corresponds to the asymptote (27) of READ>.
In another limit /v <v;—wv; <v; we obtain
K = (2/315)s° /v3}. The asymptote (30) fails in the range
|va —vi| S /v2. One can show [125] that v; =wv, for
K~ \/v;.

Let us also present the fit expression which reproduces the
asymptote (29) and numerical values of RE&) calculated over
a wide range of arguments ((v? + v%)l/2 < 50):
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2p=u+12.421 + Vw2 + 16.350u 4 45.171 ,

2¢ = u+12.421 — /w2 + 16.350u + 45.171 ,

2ps = u+ /w2 + 5524.8u + 6.7737,

2pe = u+ 0.43847 + /w2 + 8.3680u + 491.32,

D= 1.52(u1u2)3/2(u% + 13) exp(—u; — u3)

uy = 1.8091 4 /03 + (2.2476)*

uy = 1.8091 + /02 + (2.2476)*

;

(32)

with u = v} + 13 and w= v} —v?. For v; =0, the factor

RE&)(UI ,0) agrees with the factor RE\D> (v1) given by Eqn (28).

Figure 7 shows lines of R/&: const versus 71 = T/T
and 1, = T/T. The lines exhibit superfluid reduction of the
direct Urca for any T, T,; and T¢,. The behavior of RE&) at
13 4+13 <1 (both superfluidities are strong) is of special
interest. In this case one can obtain an approximate relation-
ship [19, 125]

R ~ min(R®, R, (33)

where RED) and RgD) are the reduction factors for super-
fluidities of one type. According to (33), the factor R(12> is
mainly determined by a stronger superfluidity (1 or 2). The
presence of the second, weaker superfluidity naturally reduces
Rllz), but not to a great extent. This is confirmed by the
aS}[/)mptote (29). A transition from the regime in which
R(lz) ~ RgD) to the regime in which RE?) ~ R(zD) takes place
in the region v, ~ v, where the asymptote R(llz) requires
special consideration.

Using Eqn (25), it is not difficult to evaluate R®) for the
cases (BA) and (CA), in which the protons suffer singlet-state
pairing while the neutrons suffer triplet-state pairing. The
evaluation is reduced to a one-dimensional integration in Eqn
(25) of the quantity J(y1, yz% fitted bg)Eqns (31) and (32). The
results of calculations of R§3A) and RCA> forany T, T, and T,
are shown in Fig. 7. The dependence of RgA and Ry on 1
and 15 is similar to the dependence of R/&, shown in the same
figure, but now R(®)(1y,15) # RP)(12,7;). The approximate
expression (33) in these cases is valid as well as confirmed by
the asymptotes [125]. Since the superfluidity of type C reduces
the neutrino emission much more weakly than that of type A
or B, the transition from one dominating superfluidity to the
other in case (CA) for v; > 1 takes place at v, ~ Inwvy.
Moreover, for v; & vo» > 1 the factor Rg) appears to be
much larger than RE&) or Rg) (Fig. 6).

For not very strong superfluidities (BA) ((v? + v3 )1/ 255
or [(1—1)/0.65*+[(1—1,)/0.76]* < 1), the reduction
factor is fitted by

) 10* — 2.8390% — 5.022

BA 104 + 757.003 + 149407 + 211. 10307 + 0.4832v8v}

(34)

In the case of not too strong superfluidities (CA)
(R +12)7? <10 or [(1—-12)/0.825]°+ [(1—1,)/0.8]° < 1)
RE: A> is fitted by the expression:

RE) =10*(10* + 793.90% + 457.30} 4 66.07030}
+2.0930 + 0311205 + 1.068v30?

+0.01536v50f + 0.0063120507) " . (35)
If v; = 0 or v; = 0, the above fits agree with Eqns (28). The
tables of RSDA) and Rg), as well as the asymptotes of these
factors in the limit of strong superfluidity are given in Ref.
[125].

Before publication of the above results [121, 125], as far as
we know, simulation of the enhanced NS cooling with
account of the superfluidity of neutrons and protons was
carried out in the only paper [127]. The authors assumed the

simplified reduction factor R(l]23> = R%D) RED). The actual
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Figure 7. Lines of constant reduction factors R(® for the direct Urca in the
presence of neutron and proton superfluidities (AA), (BA) and (CA). The
curves are labeled by the values Ig R®). In the region 7, > 1 and 7, > 1
neutrons and protons are normal and R® = 1. In the region 7, < 1,
7, = 1, where only neutrons are superfluid, and in the region 7, > 1,
7, < 1, where only protons are superfluid, R(®) depends on the only
parameter (Section 4.3). In the region 7, < 1, 7, < 1 both, neutron and
protons, are superfluid at once.

factor, Eqn (33), is quite different, i.e., the simplified factor
strongly overestimates the effect of superfluidity of neutrons
and protons.

In 1992 Prakash et al. [20] showed that practically all
equations of state in the inner NS cores, which predict
appearance of hyperons, open the direct Urca reactions
involving hyperons:

B]—>Bz—|-1—|-\_/7 Bg-i-l—>]31—|—\/7 (36)

where B and B; are baryons (nucleons, A-, X- or E-hyperons,
A -resonance), and 1 is a lepton (electron or p-meson). The
hyperonic processes (36) do not conserve strangeness; the
neutrino emissivities in these processes are somewhat lower
than in the nucleon direct Urca process (4). The emissivities
are given by expressions similar to Eqn (24), but with different
numerical coefficients [20].

Hyperons, like nucleons, may be in a superfluid state
[116]. Their superfluidity is most likely to be of singlet-state
type due to their relatively small number density. The
reduction factors for the direct Urca processes involving
hyperons are similar to those for the nucleon direct Urca.

5. Modified Urca process and neutrino
bremsstrahlung due to nucleon—nucleon
scattering

5.1 Two branches of the modified Urca process

In this section we will analyze the standard neutrino energy
loss rates in the processes (1) —(3) (Section 2.2). In the absence
of superfluidity, these processes were studied by Bahcall and
Wolf [22, 23], Flowers et al. [128], Friman and Maxwell [12],
as well as by Maxwell [129]. The latter author also considered
the processes involving hyperons. The most detailed article
seems to be that by Friman and Maxwell [12], where,
however, the proton branch of the modified Urca-process
was neglected. The proton branch was analyzed and the
superfluid reduction factors for the standard process were
calculated in Ref. [130]. Below we will mainly follow the
consideration of this paper.

The main standard neutrino energy loss mechanism in
non-superfluid matter is the modified Urca process. It will be
labeled by superscripts (MN), where N=n indicates the
neutron branch (1) of the process, while N =p indicates the
proton branch (2). Both branches consist of direct and inverse
reactions and are described by similar Feynman diagrams. If
beta-equilibrium is established, the rates of the direct and
inverse branches are equal; it is sufficient to calculate the rate
of any reaction and double the result. The general expressions
for the neutron and proton branches of the modified Urca
process can be written as (i = ¢ = kg = 1):

OMN) 2Jhi[ dﬁ?,} d*p.  dp, 6y (2m)°
(2n)* | 2¢.(2n)* 26,(2m)°

j=1
L
Pi) 5 Z ‘M |2 )

spins

X (S(Ef — El)(S(Pf — (37)

where p; is the nucleon momentum (j = 1, 2, 3, 4), p, and &
are, respectively, the electron momentum and energy; while
p, and ¢, are, respectively, the neutrino momentum and
energy. The delta function 6(Er — E;) describes energy con-
servation, and 6(Py — P;) describes momentum conservation;
the subscripts i and f refer to the initial and final particle
states, respectively. Furthermore, £ means the product of the
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Fermi—Dirac functions or corresponding blocking factors
for nucleons and electron; |M\2 is the squared reaction
amplitude, the sum is over all particle spins. The factor 2 in
the denominator before the summation sign is introduced to
avoid double counting of the same collisions of identical
particles.

Introducing dimensionless variables, one can write [130]
the emissivity (37) in a form similar to the direct Urca
emissivity [see Eqn (20) and explanations afterwards]:

OMN) — 4(21[)14 TSAISSPZ;S M, (38)
a=w[[1[ s]s(3m) )
I= J dx, x Lﬁ roo dx; f,] 5 (/i: xj — x) : (40)
S = JIJPF/ mj (41)

The quantity 4 contains integrals over orientations of particle
momenta (j = 5 corresponds to electron); all lengths of the
momenta p; of nucleons and electron in the delta function
should be set equal to the Fermi momenta. The typical
neutrino momentum p, ~ T is much smaller than the
momenta pg of other particles. Thus, it can be neglected in
momentum conservation; the integration over orientations of
the neutrino momentum in 4 immediately yields 4n. The
quantity 7, given by Eqn (40), includes integrals over
dimensionless energies of neutrinos x, = p,/T =¢,/T and
other particles | =R, (p—pr,)/T [see Eqn (8)];
fi = [exp(x;) + ™! Fmally, the quantity S is the product
of density of states of the particle species 1 <j <5 (with
effective masses mf) at the Fermi surfaces.

Owing to the similarity of the Feynman diagrams for the
neutron and proton branches of the modified Urca process,
(1) and (2), the reaction amplitudes M and phase integrals /
are practically the same. The reactions differ by the products
of the density of states S and by the angular integrals A.

In non-superfluid matter, one has I=1I,=1151
378 /120960 (see, e.g., Ref. [1]). The amplitude M for the
neutron branch of the modified Urca process was calculated
by Friman and Maxwell [12] using the Weinberg—Salam —
Glashaw theory of electroweak interaction. The long-range
(small momentum transfer) part of the nucleon—nucleon
interaction was described in the one-pion-exchange
approach, while the short-range (large momentum transfer)
part was described in the frame of the Landau Fermi-liquid
theory (e.g., Refs [14]). The squared amplitude [ |* summed
over spin states is given by Eqn (39) of Ref. [12].

The angular integrals (39) for processes (1) and (2) differ
due to the difference of neutron and proton Fermi momenta
(Section 2.1). The proton reaction branch involves three
protons with a rather small Fermi momentum and the only
neutron with a larger momentum, while the neutron branch
involves three neutrons with a large momentum and the only
proton with a small momentum. Direct calculation of the
angular integrals for these processes in the absence of super-
fluidity gives [1, 130]

p0 = (42)

2”(4“)4 (1 PF,
e, PEPF,

e @ ,
4pr, )

where @ = 1 if the proton branch is allowed by momentum
conservation, and @ = 0 otherwise. Let us recall that in the
outer NS core the Fermi momenta pr, and pg, are much
smaller than pg, (Section 2.1). Thus @ =1 for pg, <
3pE, + PF,- Notice that the expression for A4, is obtained
from Eqn (39) in the case pr, > pr, + pr, . In the opposite case
of pr, < pr, + PF,» Ano is given by Eqn (13) of Ref. [130] butin
this case the direct Urca process dominates and the modified
Urca processes are insignificant.

Using the above expressions for Iy and A,y, Friman and
Maxwell [12] calculated the neutrino emissivity in the neutron
branch of the modified Urca process (in the standard physical
units):

(Mn) _ 11513 Gpgqm mp f pF (kB T)
QO 10 Ocl’lﬁn
"~ 30240 2n My 7108
N 1/3
~ 8.55x 10! <ﬂ> <—p> <E> TSomp, (ergem™> s7!),
my mp ) \ng

(43)

ga. = 1.261s the axial-vector constant of weak hadron current,
™ ~ 1 is the tN-interaction constant in the p-state in the one-
pion-exchange approximation, and i, is the pion mass (n%).
The factor o, describes the momentum dependence of the
squared reaction amplitude in the Born approximation, and
B, contains different corrections. Accordmg to Eqn (62) of
Ref. [12], o, &~ 1.76 — 0.63 (no/ny) 213 where n, is the number
density of neutrons. In the final Eqn (65¢) of Ref. [12] for
Q(()Mm, the authors used the value o, = 1.13, calculated for
p = py, and set f, = 0.68 (to account for the correlation
effects).
The expression for the neutrino emissivity in the proton
reaction was derived in Ref. [130]

o) _ 11513 Gheinm; (ﬁ )4ppe(kBT)8

0 30240 2 Ny 7108

m* 3 *
x ap/fp<1 - Lr )@ ~ 8.53x 107! (—f’> <"i>
4pEp my ) \my

1/3
e 8 _ DPF, -3 1
X (no) Tgocpﬁp<1 yr. )@ (ergem™s™ ). (44)

p

Taking into account all uncertainties concerned with the
calculation of the reaction amplitude [12] we set o, = o, and
B, = By Itiseasy to see that the emissivities in the neutron (43)
and proton (44) branches of the process are similar. The main
difference of the proton branch is in its threshold character:
the reaction is allowed for pr, < 3pg, + pr,. In npe-matter,
this inequality is equivalent to pr, < 4pr., i.e., to ne > n,/64.
The latter condition is realized almost everywhere in the NS
core. It can be violated only for ultra-soft equations of state at
p S py. For these equations of state, the proton branch can be
forbidden in the outermost part of the NS core. Similar but
much more stringent threshold conditions can be formulated
for the direct Urca Ig{rocess 4) g\%ectlons 2.2 and 4)
Comgdrmg Q and Q0 , we find: Q /Q
(my /mi)°[1 — pg,/(4pr,)]. For instance, at my = my dnd
DF, 7pF we have Q<M b _ =0.750, (Mn) Therefore the proton
branch of the process is nearly as efficient as the neutron
branch.

The potential efficiency of the proton branch was outlined
by Itoh and Tsuneto [131] who, however, did not calculate
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Q(()Mm. Later the neutrino emissivity Q((]Mp) was calculated by
Maxwell [129] who found it negligibly small as compared to
Q(()M“). This conclusion is erroneous due to several inaccura-
cies made in Ref. [129] (and analyzed in Ref. [130]). In
particular, the author incorrectly neglected the electron
momentum in momentum conservation law.

5.2 Modified Urca processes in superfluid matter

Nucleon superfluidity reduces the modified Urca processes
(see Section 4.2). Let us analyze this reduction. We will adopt
the traditional assumption (Section 3.1) that the proton
superfluidity is of type A, while the neutron superfluidity is
of type B. Our results will also be valid for the neutron pairing
of type A (at p < py), as will be mentioned later. Reduction of
the modified Urca process by the neutron pairing of type C
has not been considered so far.

Superfluidity affects the nucleon dispersion relations
under the integral (37) in accordance with Eqn (6). The
neutrino emissivity of the neutron and proton branches of
the process can be presented in the form

oMn) — Q(()MWR(MH)’ oMp) — QéMp)R(Mm 7

(45)
where QBM“) and Q(()Mp> are the emissivities (43) and (44) in
non-superfluid matter, while R ™™ and R ™MPp) are the factors,

which describe superfluid reduction of the reactions
(RMN) < 1). Generally, RMN) = J/(InoAno), where

IN = 4nJH de; [ dx, x {f‘[ rw dx_/f(Z_/)}

=1 0 j=1J—00

o 2a)s(2m)

(46)

f(z) =1/(expz+ 1) for nucleons (j < 4) is defined by Eqn
(8); one should set zs = x5 = x, for an electron.

Equation (46) enables one to calculate the reduction
factors RM" and RMP) as a function of T, T, and Tp.
Below we present the results [130] for the proton superfluidity
of type A and normal neutrons as well as for the neutron
superfluidity of type B and normal protons. The behavior of
RM™) and RMP) in the presence of the joint superfluidity of
nucleons is described in Section 5.4.

5.2.1 Singlet-state proton pairing. Since the singlet-state gap is
isotropic the angular and energy integrations in Eqn (46) are
decomposed, and the angular integration remains the same as
in non-superfluid matter.

Just as in the case of the direct Urca process, the reduction
factors of the neutron and Blroton branches of the modified
Urca process, RMn A " and R! A > Can be expressed in terms of
the dlmensmnless energy gap v, = va [see Eqn (11); here and
hereafter the subscripts in R™MN) indicate the superfluid
partlcle sg)ecies and superfluidity type]. Clearly, R An) =1
and R™MP) = 1 for T>= Tep (va =0). In the case of strong
superﬂuldlty (T € T¢p, va — o0), the asymptotes of both
factors are [130]

(Mn) _ 72V2m oS
PA T T1513 UA SXP(vA)
1.166 x 10~ 1.764
ISR RWAET)
Tp Tp

p) 120960 , - 0.00764 3.528
PA 15138 VA SXP(=20a) = o P\, )
(48)
885
&= 320 339v/3 — (ﬁ+2)}zo.130, (49)

where 1, = T/ T
Yakovlev and Levenfish [130] calculated RSXIH and R, Mp
for intermediate v and fitted them by the analytic expres—
sions, which also reproduced the asymptotes in the limit of
v — oo and obeyed the condition RMN)(0) = 1:
a5 4 b3S
R(I\/iln) —

e (3.4370 — /(343707 + 0}), (50)

a=0.1477 + \/(0.8523)2 +(0.1175v4)>,

b=0.1477 + \/(0.8523)2 + (0.1297v)?;

7
RO = {0 2414 + \/ 0.7586)° (0.13181)A)2}

X exp (5.339 —/(5.339)* + (2vA)2> : (51)

Equations (50) and (51), to%ether w1th Eqns (11), fully
determine the dependence of R, and R ) on T =T/ Tep.

The above results [130] are also valid for the singlet-state
superfluidity of neutrons. Evidently, in that case one should
set v, = va and

RMp) (vA) =

M M M
o RN (), RNV (0a) = R (va).

n (52)
Then Eqn (50) describes reduction of the proton branch of the
process and Eqn (51) describes reduction of the neutron
branch.

Wolf [76] (Fig. 2 of his article) as well as Itoh and Tsuneto
[131] were the first who considered the reduction factor RMn A
of the neutron branch of the modified Urca process by the
singlet-state neutron superfluidity; this factor is analogous to
the factor R( P) Notice that the latter authors analyzed only
the asymptote (48). In both articles the same asymptote (48)
was obtained but with different numerical factors £. Wolf [76]
got £=0.123, while Itoh and Tsuneto [131] obtained

=n/15~ 0.209. Recently R " has been calculated inde-
pendently in Ref. [132] under the artificial assumption that
the superfluid gap is temperature independent. These results
are described by the factor RSX" (va) presented above with
va = 1.764 /7.

5.2.2 Triplet-state neutron pairing. In this case the neutron gap
is anisotropic. The proton branch of the modified Urca
process is analyzed easily since only one superfluid particle
is involved. The expression for the reduction factor R%p)
reduces to a one-dimensional integral over the angle 9,
(between neutron momentum and quantization axis) of the
factor R( )( ) fitted by expression (50). The argument v, in
the latter expression should be formally replaced by yp in
accordance with Eqn (10) (Section 3.2). It is evident that
R%m( ) = 1 forv = vg = 0. In the limit vy — oo one can use
the asymptote (47) in the integrand. Then for T < T,
(vg > 1) according to Ref. [130]
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Mp) _ T2
R S —— X
nB 1 15137_[7\/* B p( )

_ L.188
Th ’
where 7, = T/T¢,. In Ref. [130] R ( p> was calculated for

intermediate values of vg and the results were fitted by the
analytic expression:

(53)

=
Ta

3.99 x 107° <
=————¢xp

7 bS
RMP) %exp (2.398 —1/(2.398)* + U123>7

a=0.1612+ \/(0.8388)2 +(0.1117vg)?,

b=0.1612 + \/(0‘8388)2 + (0.1274vp)* . (54)

Exact calculation of the reduction factor R Mn) of the
neutron branch of the modified Urca process by the triplet-
state neutron superfluidity for intermediate values of wvg is

complicated; an approximate expression will be glven in

Section 5.4. Here we present only the asymptote of R( Y in
the limit 7, < 1[130]
120960 2
RN = o o exp(~2up)

115131 33

(55)

1.56 x 1074 <
=——F——¢€Xp

6
n

2.376

Tn > '
In this case, as for the proton reaction involving superfluid
protons (48), the effect of superfluidity appears to be very
strong: the exponent argument in Rn“g") contains the doubled
gap (three neutrons which participate in the reaction belong
to superfluid component of matter).

The dependence of the reduction factors RS\:M, RS\A/IP),
R%p , and RHB " on the dimensionless temperature T and
dimensionless gap parameter v is plotted in Figs 8 and 9. For
comparison, we also present the reduction factors of the
direct Urca process, RE\ ) and Rg Let us mention that in
the case of the strong neutron superfluidity (7 < T¢,) and
normal protons the proton branch of the modified Urca
process becomes much more efficient than the neutron
branch. However in this case the main neutrino emission
comes from the neutrino bremsstrahlung due to pp-scatter-
ing, which is not affected by the neutron superfluidity.

5.3 Neutrino bremsstrahlung due to nucleon—nucleon
scattering in superfluid matter

Let us consider the effect of superfluidity on generation of
neutrino pairs in nn-, np- and pp-scattering (3); these
processes are often referred to as neutrino nucleon-nucleon
bremsstrahlung. In non-superfluid matter, the neutrino
bremsstrahlung is about two orders of magnitude less
efficient than the modified Urca process. Corresponding
neutrino emissivities (in the standard physical units) are [12,
130]

oy 41

Q() Fga ;4 <f71

T 14175 2nh1°¢8 My

. 1/3
~ 7.4 x 10" m—“ I /oc BN TS (ergem™3s7!)
~ /I My, o nnMFnn/ vV v~E 9 g )
(56)

> pFnannﬁnn(kB T) N

0.1 0.3 /T, 1.0

Figure 8. Reduction factors of various neutrino emission processes by
superfluidity of neutrons or protons versus 7/T.. Curves / show the
reduction of the p-branch of the modified Urca process (solid line) and the
direct Urca process (dashed line) by neutron superfluidity of type B.
Curves 2 correspond to reduction of the n-branch of the modified Urca
(solid line) and the direct Urca (dashed line) by proton superfluidity of
type A. Dot-and-dash lines 5, 6 and the solid line 3 refer to the np, pp-
scattering and p-branch of the modified Urca processes, respectively, for
the same superfluidity. Solid line 4 is the asymptote of the reduction factor
for the n-branch of the modified Urca process due to n superfluidity of
type B.

106

1078

Figure 9. Same as in Fig. 8, but versus the dimensionless gap parameter.

mp) 82 Gngm m fr
Q) =

14175 27p'0¢8 ) PredtnpBup (ks T)° N,

m

o o\ 13
~ 1.5x10% (ni —p> <E> SnpPopNV TG (ergem ™ s71)

my nyp no

(57)
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op 41 GRgamt (4 .
% = 14175 2nh'0e8 \my PrptppPop (ks T)° N,
N\ /. \ 3
~ 7.4 x 1019<mz> (ﬁ) tppBopNo TS (ergems7),

(58)

where m, is the n° mass, and A/, is the number of neutrino
flavors. ann and Sy have the same meaning as in Eqns (43)
and (44); they are slowly varying functions of the nucleon
Fermi momenta, i.e., density. Friman and Maxwell [12]
assumed the factors ann to be equal to their values at
P = Po: oy = 0.59, 05y = 1.06, 0, = 0.11, and the correction
factors (line d = 0.7 fm in their Table 1) iy to be f,, = 0.56,
Bnp = 0.66. They did not calculate f,,. The presented values
of B,, and B, indicate that it is reasonable to set 8, ~ 0.7.
Hereafter we will use A/, = 3 in Eqns (56) —(58) while Friman
and Maxwell [12] took into account two neutrino flavors.

In analogy with the Urca processes let us introduce the
factors RN which describe superfluid reduction of the
neutrino brcmsstrahlung due to NN scattering:

QN Q<NN (NN) (59)

Consider a singlet-state pairing A of neutrons or protons.
Then the modification of the dispersion relation by super-
fluidity affects only the phase integral. For non-superfluid
matter, the latter integral is given by Eqn (46) in Ref. [12] [cf.
with Eqn (40)]:

= an v [H [ asreo)

=1
4

X 0 (Z Xj— xv) =
=1

where in this case x, = ¢,/ T determines the total energy ¢, of a
neutrino pair. Accordingly the reduction factors take the
form:

164n®
945’

(60)

(NN)

945 [ 4 preo 4
:164118J0 dx, xﬁ[HJ dx]'rf(z]‘)k(sz—xv),

=
(61)

where the dimensionless quantity z; is defined in Eqn (8). It is
clear that RNN) = 1 for 7 > 1.

In the case of singlet-state proton pairing the reduction
factors for the np and pp processes, Rp';f) and Rgf , are
reduced to two dimensional integrals which can be calculated
numerically [130]. In the limit of strong superfluidity (7, < 1,
va — 00) the asymptotes of these factors are:

oy 945 0.910 1764
R —op)= - 62
PA = TgaS o1VA CXP(=0a) o Pl ) (62)
8505 0.671 3.528
Rff;f) TP va eXp(—2up) = ———exp <— ) , (63)
b Tp

where &; ~ 849. The asymptotes (62) and (63), as well as the
numerical values of R('jf) and jof calculated for intermedi-
ate values of va can be fitted by the expressions:

(np) _ 1 _ 2 2
RpA =573 {aexp(l.306 (1.306) +vA)

+1.732b" exp (3.303 —1/(3.303)* + 41;3\)] 7

a=0.9982 + \/(0.0018)2 + (0.3815v4),

b =0.3949 + \/ (0.6051)* + (0.2666v5 ) ; (64)

1
RYY = 3 [cz exp (44228 —/(4.228)* + (2UA)2>

+d73 exp (7.762 —1/(7.762)* + (3UA)2):| ,

¢ = 01747 +1/(0.8253)° + (0.07933u5)?,

d=0.7333 + \/(0.2667)2 +(0.1678v4)° . (65)

For singlet-state neutron pairing, we evidently have

R (on) = RED (o), R (va) = R (va) . (66)

The reduction factors considered above are shown in
Fig. 8 versus 7/T. and in Fig. 9 versus dimensionless gap
parameter v.

Summarizing the results of Sections 5.2 and 5.3 we note
that the exponent argument in the asymptote of a reduction
factor contains a single gap if one or two reacting particles
belong to the superfluid component of matter. By the number
of reacting particles we mean the total number of particles (in
the initial and final states of a bremsstrahlung process, in the
initial and final state of direct or inverse reaction of an Urca
process) belonging to the superfluid component. The gap in
the exponent argument is doubled if three or four superfluid
partrcles are involved, etc. As seen from Fig. 9, the factor

E)np (two superfluid particles) falls with increasing super-
fluidity Strcn%Mh (with i 1ncrcds1ng v) much more rapidly than
the factors or Ran (one superfluid particle). Accord-
ingly, R< (four superfluid particles) falls faster than R Mp)
(three superﬂuld particles). Let us stress that we are dlscuss-
ing the neutrino reactions considered in Sections 4 and 5. The
formulated rule is invalid for neutrino emission due to
Cooper pairing of nucleons (Section 6.1).

5.4 Neutrino reactions in the presence of neutron

and proton superfluidity

If neutrons and protons are superfluid simultaneously,
calculations of multi-dimensional integrals (46) and (61),
which determine the reduction of the standard neutrino
reactions, become very complicated. However, if a very high
accuracy is not required, one can avoid calculation by
noticing that the reduction factors for the processes involving
one superfluid particle (R, R RS\A/M), g)) nd R )) are close
to one another as functions of the dlrnenswnless parameter v
(Fig. 9). This enabled Levenfish and Yakovlev [133] to
formulate approximate similarity criteria for different reduc-
tion factors. Using these criteria we constructed the approx-
imate reduction factors for the proton and neutron branches
of the modified Urca process in the presence of neutron and
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proton superfluidity:

(D)
Ry (v, 20
RO (v, 1) = DAL 20) gt ) (67)
RY (vn)
B n
(D)
M Ry (2un,vp) oM
R (g, vp) A —BA S P2 RO (3 (68)

R (vp)

We expect that these factors, as functions of the correspond-
ing parameters v (corrected due to the number of superfluid
particles) do not differ strongly from the reduction factor
Rg?g (vn,vp) for the direct Urca process. If the protons are
normal (v, =0), then the expression for R%A )(vp, Up)
becomes exact; if the neutrons are normal (v, = 0), the factor
Rg\ﬁm (vn,vp) is exact. In addition, the approximate factors
satisfy a relationship analogous to Eqn (33).

One can also expect similarity of the reduction factors for
other neutrino reactions. For instance, the reduction of the
neutron branch of the modified Urca process, Rg};{n , by a
moderate neutron superfluidity (v < 10) should not deviate
strongly from the reduction of the proton branch of the
modified Urca process, R P), by the proton superfluidity:

RV ~ RO (vy). (69)
The approximate reduction factor R, n") for the nn scattering
in the presence of neutron superﬂuldlty and the approximate
reduction factor R( of the np scattering by the neutron and
proton superfluiditles can be written as

RUY ~ R (vy) (70)
(D)
o) R (W, vp)
( p> ~ BA . P }gAp)(’Up) . (71)

BA D
RE\ )(Up)

In the absence of the neutron superfluidity, Eqn (71) becomes
exact.

The modified Urca and neutrino bremsstrahlung pro-
cesses can involve hyperons. After minor modifications, the
above reduction factors can be valid for these reactions as
well.

6. Neutrino emission due to Cooper pairing
of nucleons

6.1 Neutrino emissivity produced by nucleon pairing
In contrast to the neutrino emission processes considered in
Sections 4 and 5, this process is allowed only in the presence of
superfluidity (Section 2.2): the superfluidity distorts the
nucleon dispersion relation near the Fermi surface and
opens the reaction (5). Actually the process consists in the
emission of a neutrino pair by a nucleon whose dispersion
relation contains an energy gap; however, in theoretical
studies, it is convenient to use the formalism of quasi-particles
and treat it [51] as the annihilation of two quasi-nucleons N
into a neutrino pair:
N4+N—-v+v. (72)
The reaction goes via weak neutral currents and produces
neutrinos of all flavors. Following Ref. [56] we will outline the
derivation of the neutrino emissivity due to singlet-state or

triplet-state pairing of non-relativistic nucleons. The reaction
is described by the Hamiltonian (7 = ¢ = kg = 1)

G
H= ——F (Cvjolo -

c,Jl),
2V/2 )

(73)

where Gg is the Fermi constant, and ¢, and ¢, are, respec-
tively, the vector and axial-vector constants of neutral hadron
currents. For neutron currents, we have (see, e.g., Ref. [134])
¢y =1, ¢, =g, =1.26, while for proton currents ¢, =
4 sin’ Ow — 1 ~ —0.08, Ca = —ga, Where Oy is the Weinberg
angle, sin? ®w = 0.23. The strong difference of ¢, for neu-
trons and protons comes from different quark structure of
these particles. Furthermore,

Jt = <J07J>: (@+'}17 QI+GQI>7 M= W\yu(l + ys)w"
(74)

are 4-vectors of neutral currents of quasi-nucleons and
neutrinos (u=0, 1, 2, 3) respectively; y, is the neutrino
Wave function, upper bar denotes Dirac conjugate; y* and
> are Dirac gamma-matrices, ¢ is a vector Pauli matrix; ¥
is a second-quantized quasi-nucleon wave function. The
function ¥ is derived using the Bogolyubov transformation.
Its description for the singlet-state and triplet-state pairing
is given, for instance, in Refs [119] and [85]. In both cases

o Z Lo {exp(fiel +ipr) Ugy (P)dpy
pon

+ exp(ict — ipr) V,m(—p)&gn} , (75)

where p and ¢ = {/vi(p — pF)2 + 5% are, respectively, the

quasiparticle momentum and energy (with respect to the
Fermi level). A basic spinor y, describes a nucleon state with
fixed spin projection (6 ==+1) onto the quantization axis (axis
z); n enumerates quasi-nucleon spin states; J,, is the energy
gap in the quasi-particle spectrum, vg is the Fermi velocity,
oc;;n and dyp, are, respectively, creation and annihilation
operators for a quasiparticle in a &y, state; U(p) and V(p)
are the operators of the Bogolyubov transformation. For
| p — pE| < pr, their matrix elements obey the relationships
Uoy(P) = tpdoy and 3> |Vey(p ) = 2v , where

up = B (1 +7UF@JPF)>}]/2,

we B (1-m )

For a singlet-state pairing, the gap Jy, is isotropic, and the
quantities up, and v, depend only on p=|p|. For a triplet-state
pairing, the quantities Jp, up and v, also depend on the
orientation of p.

Let ¢, = (wy,q,) and ¢; = (wy,q),) be 4-momenta of a
neutrino and antineutrino, respectively, while p = (¢, p) and
p’ = (¢/,p’) be 4-momenta of annihilating quasi-nucleons.
Using the Golden Rule of quantum mechanics, we can
present the neutrino emissivity due to Cooper pairing (CP)
as:

(76)
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2
@) _ (G 'Ly [ dp_ dpf
¢ <2x/§) 2N"J n)® (2n)}

dq, dq,
X 35 3
2w,(2m)” 2w, (27)

[6‘3[00|10|2 + Gllily

x 2m)* W (p+p — g0 — g0 + o), (77)
where NV, =3 is the number of neutrino flavors, and the factor
1/2 before N, excludes double counting of the same quasi-
nucleon collisions. The integral is taken over the range
(gv +q(,)2 > 0, where the process is open kinematically;
fle)=1/[exp(e/T)+ 1], i,k=1,2,3;

Ioo = Z |<B"P+@‘A>|27

nm'

L =Y (BP0, P|A4) (B ¥ o1 ¥]4)"

nm'

(78)

Here |A4) stands for the initial state of the quasi-particle
system in which one-particle states (p,#n) and (p’,n’) are
occupied, and |B) stands for the final state of the system in
which the indicated one-particle states are empty.

The integral (77) is simplified by the standard technique,
as described in Ref. [56]. The transformations take into
account that nucleons are non-relativistic and strongly
degenerate as well as the fact that the process is open
kinematically in a small domain of phase space where the
quasi-nucleon momenta p and p’ are almost parallel. The
latter circumstance allows one to take the smooth functions
Iy (p,p’) and I (p,p’) out of the integral over dp’ putting
p' = —p. After a number of transformations the final
expression for the neutrino emissivity can be written (in the
standard physical units) as [55, 56]

AGEmipr
cp N 7
0 = 1575706 (kpT) NyaF

=1.170 x 10*! <ﬁ> (ﬂ) TIN,aF (ergem>s71),

mN mnc¢
(79)

where Ty = T/(10° K), a is a numerical factor (see below),
and the function F, in our standard notation (8), is given by
the integral

1 00 4
pe a0
4n 0 (expz+1)

The singlet-state gap J;, is isotropic; thus, integration over dQ2
is trivial and gives 4. In the triplet-state case, the function F
contains averaging over positions of a quasi-nucleon on the
Fermi-surface. While using Eqn (79), one can take into
account that pg/(mnc) =~ 0.353(nN/n0)1/3, where ny is the
number density of nucleons N, and ny = 0.16 fm~3 as earlier.

The emissivity Q(°) depends on the superfluidity type
through the factor a and the function F. For singlet-state
neutron pairing, a is determined by the only vector constant
¢y ana =2 =1. If we used a similar expression for the
singlet-state pairing of protons, we would obtain a very
small factor a,o = 0.0064, which indicates the weakness of
the process. Under these conditions, one should take into

(80)

account the relativistic correction to @, produced by the axial-
vector proton current. Calculating and adding this correction
for the singlet-state pairing of protons, Kaminker et al. [135]
obtained

2 *\ 2
22 Y (M
wm=d+a(e) [G) ra
2 m* 2 11
:0.0064+1.59<m> K—P) +—},
c n, 42

where vk, /¢ = (pF, /mpc)(mp /my). The relativistic correction
appears to be about 10—50 times larger than the main non-
relativistic term. This noticeably enhances the neutrino
emission due to singlet-state proton pairing although it
remains much weaker than the emission due to the neutron
pairing.

In the case of triplet-state pairing « is determined by both
the vector and axial-vector constants of neutral hadron
currents: a = anp = anc = ¢ + 2¢2 [56]. For the neutron
pairing, we obtain a,g = ayc = 4.17. Notice that in the case
of triplet-state pairing of protons which is thought to be
hardly possible in NS cores we would obtain
ap = apc = 3.18. Under such exotic conditions, the neutrino
emission due to proton pairing would be almost as efficient as
the emission due to neutron pairing.

The result for the singlet-state pairing of neutrons,
presented above, coincides with that obtained in the pioneer-
ing article by Flowers et al. [51] (for two neutrino flavors,
N, = 2). Similar expressions obtained in Refs [49, 52] for
N, =1 contain an extra factor (1 + 3g2). In addition, the
expression for Q(CP) in Refs [49, 52] contains a misprint: 7% in
the denominator instead of m° (although the numerical
estimate of Q(°P) is obtained with the correct factor ©°). The
cases of singlet-state proton pairing and triplet-state neutron
pairing were analyzed in Refs [55, 56, 135] for the first time.

Let us mention that the values of ¢y, ¢, and a can be
renormalized in dense NS matter under in-medium effects.
The renormalization is a difficult task. It will be neglected
below.

The function F, given by Eqn (80), depends on the only
variable v, the gap parameter [see Eqn (9)]. Using Eqn (80)
one can easily obtain the asymptote of this function and
calculate its dependence on t = T/T, for superfluidity of
types A, B and C in analogy with the calculations presented
in Sections 3— 5. This has been done in Refs [55, 56].

In a small vicinity of 7'~ T¢,in whichv < 1 andt — 1, we
have:

(81)

Fa(v) = 0.60207 = 5.65(1 — 1),
Fg(v) = 1.2040* = 4.71(1 — 1),

Fc(v) = 0.40130* = 4.71(1 — 7). (82)

For the low temperatures 7T < T, the parameter v > 1, and
the asymptotes of F(v) are
3.528
P\ — )
T

35.5

VT 13
v S

Fa(v) exp(—2v) =

oo e 127 2376
Fg(v) ——4\/§v exp(—2v) =% exp( . )
Fe(v) = 50'203 =12.17%. (83)
v



August, 1999

Cooling of neutron stars and superfluidity in their cores 757

Let us stress that the neutrino emission due to nucleon
pairing differs from other neutrino reactions: first, it has a
temperature threshold (is allowed only for T < T¢); second,
its emissivity is a nonmonotonic function of temperature. The
emissivity grows rapidly with decreasing T just after super-
fluidity but then reaches maximum and decreases. According
to Eqn (83), a strong superfluidity reduces considerably the
emissivity just as it reduces the heat capacity or direct Urca
process: the reduction is exponential if the gap is nodeless
(cases A and B) and it is power-law otherwise (case C); see
Sections 3 and 4.

The asymptotes (82) and (83), as well as the numerical
values of F(v) for intermediate v, are fitted by the simple
expressions [55, 56]

Fa(v) = (0.60207 + 0.59420* + 0.2880°)

12
x (0.5547 + \/(0.4453)2 + 0.01131}2>

X exp (— 402 4 (2.245)% + 2.245) ,

_ 1.2040% 4 3.7330* + 0.31910°

F
5(v) 1+0351102

2

x (0.7591 + \/(0.2409)2 + 0.3145@2>

X exp (- 402 4 (0.4616)* + 0.4616) ,

_ 0.4013v2 — 0.043v* + 0.0021720°
~ 1-0.2018024-0.02601v4 —0.001477v5 +0.0000434v8

(84)

Fe(v)

Equations (79) and (84) enable one to calculate easily the
neutrino emissivity Q(°?) due to Cooper pairing of nucleons
for superfluidity of types A, B and C. Similar expressions
describe neutrino emissivity due to pairing of hyperons. The
required values of a are listed in Ref. [56].

Figure 10 (from Ref. [56]) shows the temperature depen-
dence of the emissivity Q") due to neutron pairing in the NS
core for p = 2 x 10'* g cm™3. The adopted equation of state
of matter is described in Section 7.2. The effective nucleon
masses are set equal to my, =0.7my, and the critical
temperature is T, = 10° K. The density chosen is typical for
transition between single-state pairing and triple-state pairing
(Section 3.1). Thus, different models of nucleon—nucleon
interaction may lead to a different neutron superfluidity
type. We present the curves for the three superfluidity types
considered above.

When the temperature falls below 7., the neutrino
emissivity produced by Cooper pairing strongly increases.
The main neutrino energy release takes place in the
temperature interval 0.27¢, < T < 0.96 Ty, with the max-
imum at 7= 0.4 T.,. The emissivity may be sufficiently
high, comparable with or even larger than the emissivity of
the modified Urca process in non-superfluid matter (Section
4). Under certain conditions, neutrino emission due to
pairing of neutrons may be significant in the inner NS
crust [55, 45]. The reaction may be noticeable even in the
presence of the direct Urca process in the inner NS core if
the direct Urca is partly suppressed by the proton super-
fluidity (see below).

22
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Figure 10. Temperature dependence of the neutrino emissivity due to
Cooper pairing of neutrons for p =2 x 10" g cm~3 and T, = 10° K for
superfluidity types A (solid line), B (dashes) and C (dots).

6.2 Summary of Sections 3—6

Let us summarize the results of Sections 3—6. For illustra-
tion, we use the same equation of state of matter (neutrons,
protons and electrons) in the NS core as in our cooling
simulations (Section 7.2), and set my = 0.7mn. Let us
adopt that the neutron pairing is of type B, while the proton
pairing is of type A.

Figure 11 illustrates the effect of superfluidity on the heat
capacity for p = 2pg, Ten =4 x 10° K and T, = 6 x 10® K.
In the absence of superfluidity, the main contribution to the
heat capacity comes from neutrons. The heat capacities of
protons and electrons are lower than that of neutrons by a
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Figure 11. Temperature dependence of the total and partial (n, p, e) specific
heat capacities at p =2p, for neutron superfluidity of type B with
Ten = 4 x 10° and proton superfluidity of type A with T, = 6 x 108 K.
The dotted lines show corresponding heat capacities in non-superfluid
matter.
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factor of 2.5 and 9, respectively. After superfluidity appears
with decreasing temperature, the relative contributions of
different particles change. The jumps of the total and neutron
heat capacities with the fall of temperature below 7' = T¢, are
associated with latent heat release produced by pairing of
neutrons. However for 7 < 10° K the neutron superfluidity
becomes strong and reduces greatly the partial heat capacity.
The main contribution to the heat capacity now comes from
protons. When the temperature falls below T, the proton
heat capacity jumps up due to the appearance of proton
superfluidity. For T'< 2 x 103 K the latter superfluidity, in
turn, becomes strong and reduces exponentially the proton
heat capacity. As a result, at lower temperatures the total heat
capacity is determined by electrons and does not depend on
nucleon superfluidity. Examining Fig. 11, it is easy to predict
the relative contributions of different particles to the heat
capacity for any relationships between 7, T, and T,.

The effect of superfluidity on neutrino reactions is more
complicated. For instance, Fig. 12 shows the neutrino
emissivities in different reactions for T, = 8 x 108 K and
Tep =4 % 10° K. The top panel corresponds to p=2p,. The
direct Urca process is forbidden at this density (being allowed
at p,, = 4.64 p, = 1.30 x 105 gcm 3, for a given equation of
state). In the absence of neutron superfluidity (7' > T¢,) the
dominant mechanism is the modified Urca process. If,
however, the temperature decreases from 7 =T, to
T ~ 10%° K the total neutrino emissivity increases by about
two orders of magnitude due to Cooper pairing of neutrons.
Therefore, sometimes the appearance of superfluidity accel-
erates NS cooling instead of slowing it.

The bottom panel of Fig. 12 corresponds to denser matter,
p=>5p,, where the powerful direct Urca process is switched
on. In this case, the neutrino emissivity is actually determined
by two processes, the direct Urca and Cooper pairing of
nucleons. The direct Urca dominates at T 2, 3 x 108 K. With
further decrease of 7, the direct Urca and the reactions
considered in Sections 4 and 5 are reduced so strongly, that
the Cooper pairing becomes dominant.

It is well known that the neutrino emission from a non-
superfluid NS core is mainly determined by a single, most
powerful neutrino emission mechanism: the direct Urca for
the enhanced cooling, or the modified Urca for the standard
cooling. However, as seen from Fig. 12, this ‘simplicity’ is
violated in superfluid NS cores. Different neutrino mechan-
isms can dominate at different cooling stages depending on T,
Ten, Tep, and p.

Figure 13 shows which neutrino mechanisms dominate
for different T., and T,,. In addition to the neutrino
processes considered above we have included one more
process, neutrino bremsstrahlung due to electron—electron
collisions [136]. This mechanism, as a rule, is sufficiently
weak and neglected in cooling simulations. The three left
diagrams of Fig 13 illustrate the case of standard cooling at
p=2p, for three internal stellar temperatures: 108, 3 x 103
and 10° K; the three on the right correspond to enhanced
cooling at p=5p, for the same 7. The chosen values of T
cover the region most interesting in practice. Our calcula-
tions show that the topology of the figures varies only
slightly with p as long as p does not cross the threshold
value p = p. Therefore, the presented figures reflect
adequately the efficiency of all neutrino processes in the
core of a cooling NS. One can see that, in the presence of
superfluidity, many different mechanisms can dominate in
certain parameter ranges.
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Figure 12. Temperature dependence of the neutrino emissivity in different
reactions for neutron superfluidity of type B with 7, = 8 x 10® K and
proton superfluidity of type A with T¢, = 4 x 10° K at p = 2 p, [standard
neutrino reactions, panel (a)] and p = 5 p, [direct Urca is allowed, panel
(b)]. The dot-and-dash line shows the emissivity due to Cooper pairing of
neutrons plus protons; the solid line presents the total emissivity. Panel (a):
the dashed line gives the total emissivity in two branches of the modified
Urca process; the dotted line exhibits the total bremsstrahlung emissivity
due to nn, np and pp scattering. Panel (b): the dashed line corresponds to
the direct Urca process.

Notice that if the direct Urca process is open, the modified
Urca process is always insignificant and may be neglected. In
the presence of neutron superfluidity alone, the neutrino
bremsstrahlung due to pp collisions becomes the main
mechanism at T < T, being independent of the neutron
superfluidity. In the presence of proton superfluidity alone,
the neutrino bremsstrahlung due to nn collisions dominates at
T < Ty, The Cooper pairing of neutrons exceeds the
standard neutrino energy losses for 7<10° K and for not
too strong neutron superfluidity (0.12< T/ T, <0.96). This
parameter range is very interesting for applications. The
neutrino emission due to Cooper pairing of neutrons is also
significant at early cooling stages, when T 2 10° K, but in a
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Figure 13. Regions of T¢, (superfluidity of type B) and T, (type A), in which different neutrino reactions dominate at 7= 10%, 3 x 10% and 10% K in
matter of density p = 2p,, (standard cooling) and p = 5p, (enhanced cooling).

narrower temperature range near 7 =~ 0.4 T.,, or in the
presence of proton superfluidity. Although the neutrino
production due to proton pairing is much weaker, it can also
dominate. The neutrino emission due to pairing of neutrons
and protons can dominate in the enhanced NS cooling as well
provided the nucleons of one species are strongly superfluid
while the others are moderately superfluid. Very strong
superfluidities of neutrons and protons (upper right corners
of the figures) switch off all neutrino processes involving
nucleons. As a result, the neutrino bremsstrahlung due to
electron—electron collisions, which is practically unaffected
by superfluidity, becomes dominant. It is difficult to expect
that this weak process is important under other conditions.

7. Cooling of neutron stars

7.1 Review of articles on neutron star cooling

7.1.1 Overall review. The theory of NS cooling has been
developing over more than 30 years. The first articles
appeared even before the discovery of NSs. Their authors
tried to prove that not too old NSs may emit sufficiently
powerful thermal X-ray radiation which could serve to
discover NSs. The first estimates of the thermal emission
from cooling NSs were most probably done by R. Stabler
[137]in 1960. In 1964 Chiu [138] repeated these estimates and
theoretically proved the possibility of discovering NSs from
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their thermal emission. First, simplified calculations of the
NS cooling were done by Morton [139], Chiu and Salpeter
[46] and also by Bahcall and Wolf [23] after the discovery of
X-ray sources in the Crab nebula and Scorpion constellation
in the balloon experiments by Bowyer et al. [140].

The foundation of the strict cooling theory was laid in the
fundamental paper by Tsuruta and Cameron [141] who
explicitly formulated the main elements of the theory — the
relationship between the internal and surface NS tempera-
tures, the neutrino and photon cooling stages, etc. Later the
theory was developed in many papers.

In the 1970s and 1980s, the main attention was paid to the
equation of state and nuclear composition of the NS cores
(including the possible appearance of exotic particles), to
neutrino reactions and to the relationship between the
internal and surface temperatures of NSs (particularly in the
presence of strong magnetic fields). The achievements of the
theory in the middle of the 1970s were reviewed by Tsuruta
[142]. A splash of theoretical activity at the beginning of the
1980s was concerned with the launch of the Einstein space
observatory (Section 8.1). The articles of the ‘Einstein series’
were also reviewed by Tsuruta [143 —145]. The launch of the
ROSAT observatory in 1990 (Section 8.1) initiated a new rise
of theoretical activity which is still being continued. Recent
articles are mainly focused on the mechanisms of NS
reheating at the late evolutionary stages (see below) and the
effects of superfluidity in NS cores. Let us mention a recent
review by Tsuruta [146]. New microscopic theories of dense
matter are appearing ever complicating cooling models; many
problems are still unsolved.

Let us outline some aspects of the theory.

The first articles were devoted to the standard cooling
(produced by the neutrino reactions from the ‘standard’
collection, Section 5). Enhanced cooling has been simulated
since the end of the 1970s. It has been assumed in many
articles that the enhanced neutrino luminosity is associated
with the exotic composition of the NS cores containing pion
condensates of quark plasma; see, e.g., Refs [30, 142, 147—
153]. By the end of the 1980s a new cooling agent was put
forward, kaon condensate [30, 154, 155]. New models of
dense matter with highly polarized pion degrees of freedom
[48 —50] have also been proposed. According to these models
the neutrino luminosity is strongly enhanced due to virtual
excitation of the pion field even if the density of matter does
not exceed the critical density of actual pion condensation.
Modern cooling theories of stars with quark cores, or pion or
kaon condensates have been described, for instance, in Refs
[21, 30].

A new stage of the theory of enhanced cooling was opened
by Lattimer et al. [19] who showed that the direct Urca
process can be allowed in the NS cores with the standard
nuclear composition for many realistic equations of state. The
process initiates rapid NS cooling [5, 30, 124, 127, 133, 156—
158] without invoking ‘exotic’ hypotheses (Section 2.2). A
detailed description of the ‘non-exotic’ standard and
enhanced cooling theories was given by Pethick [21].

The effect of the NS magnetic field on the relationship
between the internal and surface stellar temperatures has been
taken into account starting from the articles by Tsuruta and
coauthors [159—161]. These articles were the first where a
representative set of neutrino reactions in the NS crust and
core was included (plasmon decay, annihilation of electron-
positron pairs, photon decay, electron bremsstrahlung due to
scattering off nuclei, the neutron branch of the modified Urca

process). A detailed study of the relationship between the
internal and surface temperatures in a NS with the magnetic
field normal to the surface was carried out by Van Riper [162].
He also analysed in detail [163] the effect of such magnetic
fields on NS cooling. Page [164] as well as Shibanov and
Yakovlev [165] considered the cooling of a NS with a dipole
magnetic field and showed that the dipole field affected the
cooling much more weakly, and in a qualitatively different
way, than a purely radial magnetic field.

Let us mention also a recent series of articles by Heyl and
coauthors [166—171] devoted to the cooling of NSs with
superstrong magnetic fields 10'4-10'® G (the so called
‘magnetars’, see Section 8.1.1). These fields may strongly
reduce the thermal insulation of the NS envelope, making the
magnetar’s surface much hotter at the early cooling stage,
than the surface of an ‘ordinary’ NS. Let us stress that the
microscopic properties of matter in superstrong magnetic
fields (equation of state, thermal conductivity) are poorly
known, so that the results by Heyl and coauthors can be
regarded as very preliminary.

The cooling can also be affected noticeably [53, 155, 172—
174] by the presence of a thin (of mass < 10-8M ) envelope of
light elements (H, He) at the surface of a non-magnetized or
weakly magnetized NS. Owing to the higher electron thermal
conductivity of plasma composed of light elements, the NS
surface appears to be significantly warmer at the early cooling
stages.

An important contribution to the theory was made in the
PhD thesis by Malone [175]. He was the first who calculated
the standard NS cooling beyond the approximation of
isothermal internal layers. This allowed him to describe the
thermal relaxation of the internal layers in the first 100— 1000
years of NS life. Analogous nonisothermal calculations of the
cooling enhanced by the presence of a pion condensate were
done in the PhD thesis of Richardson [176]. The results of
both theses were published in one paper [150]. Later the
thermal relaxation of the internal layers in a young NS was
studied in a series of articles by Nomoto and Tsuruta [60,
177—180] as well as by Lattimer et al. [61]. The thermal
relaxation is accompanied by propagation of a cooling wave
from the internal layers to the surface. In principle, the
appearance of the cooling wave at the surface can be observed
in young NSs. The moment of appearance depends on the
equation of state in the central stellar region [61].

In 1980 Glen and Sutherland [147] and a year later Van
Riper and Lamb [148] included the effects of General
Relativity into the equations of NS thermal evolution (in
addition to the equations of hydrostatic equilibrium as had
been done before). In this connection let us mention a recent
paper [181] where the first two-dimensional cooling calcula-
tions of a rotating NS were carried out with an exact account
of the general relativistic effects produced by rotation.

A new direction of study was opened by Alpar et al. [182]
and Shibazaki and Lamb [183] at the end of 1980s. The
authors took into account possible reheating at late cooling
stages (NS age ¢ 2 10* yr) due to viscous dissipation of
rotational energy inside a NS. The effect is caused by
interaction of superfluid and normal components of matter
in the inner crust of a pulsar which is spinning down under the
action of magnetodipole losses. The cooling theory with
viscous reheating was developed further in a number of
articles (e.g., Refs [53, 151, 152, 155, 174, 184—187)).

The core of a cooling NS can also be reheated by the
energy release associated with a weak deviation from beta-
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equilibrium [188]. In addition, the reheating of the star with a
non-superfluid core can be produced by Ohmic dissipation of
the core magnetic field [189—192] due to the enhancement of
the electric resistance across the strong magnetic field. The
criticism of this effect in Ref. [193] is not convincing because,
while calculating the electric resistance, the authors of Ref.
[193] neglected the motion of the neutron component of
matter (the inconsistency of such an approximation is clearly
seen from the results of Ref. [194]). Finally, the reheating in an
old NS (¢ 2 107 yr) can be provided by Ohmic decay of the
magnetic field in the NS crust [195, 196]. Let us add that the
magnetic field dissipation in the crust represents a very
important process which determines the evolution of the
surface magnetic field, the magnetodipole NS spindown, NS
activity as a radio pulsar, etc. The dissipation process is
associated with cooling since the electric resistance of the
crust decreases in the course of cooling (until it reaches the
minimum produced by electron scattering off charged impu-
rities). Therefore, the dissipation rate depends on the cooling
type: it is very weak for rapid cooling. On the other hand, the
magnetic field decay weakens the electrodynamic spindown
of the star. This means that cooling, magnetic field evolution
and spindown should be considered, in principle, self-con-
sistently as magneto-rotational evolution of a NS. The
corresponding theory has been developed in a series of papers
by Urpin and coauthors (see, e.g., papers [196—198]) and
references therein) without account for the effect of super-
fluidity on the NS cooling.

7.1.2 Cooling of superfluid stars. The effect of nucleon super-
fluidity in the NS core on cooling was taken into account
starting from the article by Tsuruta et al. [159]. In the first
articles, as a rule, it was included in a simplified manner; it was
assumed that the superfluidity completely switches off the
corresponding heat capacity or neutrino emission from the
very beginning of the cooling (which corresponds to infinitely
large critical temperatures). Maxwell [123] was the first who
studied the dependence of standard NS cooling on nucleon
critical temperatures. Friman and Maxwell [12] considered a
simplified NS model with a constant-density core neglecting
the effects of General Relativity, but employing sufficiently
realistic neutrino luminosity. For a long time, before publica-
tion of the article by Page and Applegate [5], superfluidity was
not considered as a powerful cooling regulator. It was taken
into account because it appeared inevitably in microscopic
theories of dense matter (Section 3.1). However recent studies
show that superfluidity is one of the most important factors
which affect the standard and enhanced NS cooling.
Simulations of the standard cooling of NSs with super-
fluid cores have been performed in many papers, in particu-
lar, in Refs [30, 57, 56, 60, 123 124, 133, 142, 143, 147, 148,
150, 159, 175, 177, 180, 199]. While calculating the standard
neutrino luminosity of the NS core, as a rule, one took into
account the contribution of the neutron branch of the
modified Urca processes and the neutrino bremsstrahlung
due to nn- and np-scattering. Tsuruta et al. [159] were the first
who studied the NS cooling accompanied by the singlet-state
pairing of neutrons and protons. The authors of Ref. [159]
described reduction of the n-branch of the modified Urca-
process and the np bremsstrahlung by the asymptotic expres-
sions obtained in Ref. [131] for the modified Urca in the limit
of strong (T < T.) singlet-state pairing of neutrons; they
multiplied the nn-scattering rate by exp(—4,/kg7"). In Ref.
[123] the modified Urca process was just switched off at

temperatures below T¢, or T¢p. In a number of papers various
authors used the simplified reduction factors proposed by
Malone [175]: exp[—(4n + 4,)/ksT] for superfluidity of
neutrons and proton at once; exp(—4n/ksT) for singlet-
state superfluidity of neutrons or protons (for the neutron
branch of the modified Urca-process and np-bremsstrah-
lung). The reduction of the nn-bremsstrahlung by the neutron
superfluidity ~ was  described by the expression
exp(—24,/kgT). The accuracy of these approximations was
analyzed in Sections 4 and 5. Their effect on the cooling is
demonstrated in Fig. 14.

The complete set of neutrino reactions considered in
Sections 4 and 5 was first used in Ref. [133]. The authors of
Ref. [133] also employed a more accurate description of the
effects of superfluidity on the heat capacity and neutrino
luminosity (Sections 3—5), but neglected the neutrino emis-
sion due to Cooper pairing of nucleons (Section 6). The latter
process has been included only in recent simulations [50, 53—
57, 174]; let us mention that the authors of Refs [54 —57] made
use of more accurate expressions for the neutrino emissivity
given in Section 6 (although neglected the relativistic correc-
tion to the neutrino emissivity due to pairing of protons).

The importance of neutrino emission due to Cooper
pairing of nucleons for the standard NS cooling is illustrated
in Fig. 15a. One can see that the appearance of superfluidity at
the neutrino cooling stage can not only slow down the NS
cooling, as thought before, but, on the contrary, strongly
accelerate it (see, e.g., Ref. [56]). The acceleration can be so
fast that at  ~ 10° —10° yr the star can be much cooler that in
the case of the enhanced neutrino energy losses. An exclusion
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Figure 14. Cooling curves calculated using accurate (solid and dash-dotted
lines) and approximate (dashed and dotted lines) description of the effects
of superfluidity on the neutrino luminosity and heat capacity (see text).
Solid and dashed lines correspond to the enhanced cooling of a NS
(M =148M;) in the presence of the proton superfluidity with
T = 10% K. Dash-dotted and dotted lines refer to the standard cooling
of a NS (1.30 M) in the presence of neutron and proton superfluidities
with T, = 10° K and T, = 10% K. The parameters of the models are
given in Section 7.2.2. Neutrino emission due to nucleon pairing is
neglected.
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Figure 15. Standard cooling of a NS with M = 1.30 M, (a) and enhanced cooling of a NS with M = 1.48 M, (b) in the presence of superfluidity. The
curves are labeled by the values of g T¢, and Ig Tp. Solid lines are obtained including the neutrino emission due to pairing of nucleons while dashed lines
are obtained neglecting this emission. Dotted lines show cooling of non-superfluid NSs. The parameters of the models are given in Section 7.2.2. The solid
and dashed lines for lg 7., = 7.8 and Ig T, = 7.8 in panel (a) coincide with each other and so do the lines for Ig T, = 8.3,1g Te, = 8.6 and Ig T, = 10.0,

lg Tep, = 8.4 in panel (b).

is provided by superfluidity of protons alone since proton
pairing does not produce intense neutrino emission. In
addition, the difference between the cooling curves is small
in the case of normal protons and strongly superfluid
neutrons (T, 2 10° K), in which the Cooper pairing of
neutrons is not a dominant process (Section 6.2).

Simulation of enhanced cooling of NSs with the standard
composition of the cores was started by Page and Applegate
[5]. These authors were the first who discovered an interesting
feature in the cooling of NSs in which the direct Urca process
was open and neutrons or protons were superfluid: after
thermal relaxation was over the surface temperature of these
stars fell rapidly to the value Ty = T(T;), appropriate to the
internal temperature 7; = 7, and remained almost constant
during the subsequent neutrino cooling stage. Here 7 is the
critical temperature of neutrons or protons in the core, and
o ~ 1 is a numerical coefficient (for instance, according to
Ref. [5], « =~ 0.2). Moreover, the temperature 7; is almost
insensitive to other NS parameters [124]. The nature of this
phenomenon is very simple — the star cools rapidly before the
superfluidity onset, whereas the superfluidity suppresses the
cooling and ‘freezes’ the internal temperature at the level of
aT.. This opens the possibility to study superfluidity in those
NSs whose surface temperature is known from observations.

Page [124] analyzed this possibility in more detail
(neglecting the Cooper-pairing neutrino emission). He
showed that the measured surface temperatures of PSR
0656+ 14 [200] and Geminga [201] could be explained in the
standard and enhanced cooling models. The observations of
the Vela pulsar [202] are more easily explained by the
enhanced cooling model, and the observations of PSR
1055-52 [203] by standard cooling. In all these cases one
needs [124] the presence of neutron and proton superfluidities
with high critical temperatures T, ~ 10° K throughout the
NS body where the main neutrino emission occurs.

Let us stress that the results and quantitative conclusions
of Refs [5, 124] are considerably modified by including the

effects of joint superfluidity of nucleons and Cooper-pairing
neutrinos. However the principal conclusion by Page and
Applegate remains the same: a NS of age 10— 10° yr with
superfluid nucleons in its core is a ‘thermometer’ of this
superfluidity — one can measure (constrain) the critical
temperatures of neutrons T, and protons T, from the values
of the surface temperature.

Aside from Refs [5, 124] the enhanced cooling of NSs with
standard nuclear composition and nucleon superfluidity in
the cores has been studied, for instance, in Refs [53—57, 127,
133, 156, 157, 174]. As in the case of standard cooling, the
effect of superfluidity on the heat capacity and neutrino
luminosity was described in earlier articles by approximate
factors of the form exp(—4n/kpT), but gradually the theory
presented in Sections 3—5 has become implemented. The
difference between the standard and enhanced cooling curves
calculated using the accurate (Sections 3 — 5) and approximate
(exp(—A4;/kgT)) reduction factors is illustrated in Fig. 14.
The accurate reduction factors ‘freeze’ the cooling at the
neutrino cooling stage at a lower internal temperature 7" and,
accordingly, at a lower surface temperature [156].

In calculations of the enhanced neutrino luminosity the
contribution from Cooper pairing of nucleons (Section 6) has
usually been neglected (excluding Refs [50, 53-57, 174]).
According to Yakovlev [56] this process is especially impor-
tant in the presence of proton superfluidity with T, > To,.
Such superfluidity appears at the early cooling stage and
suppresses the direct Urca process long before the onset of
neutron pairing. Therefore, the splash of neutrino emission
associated with neutron pairing is very pronounced. In this
case the NS cooling does not slow down, as it would without
neutrino emission due to nucleon pairing, but is strongly
accelerated (Fig. 15b). Let us recall that a similar situation
persists in the case of standard cooling (also see Section 7.2).

As a result, nucleon superfluidity plays the leading role for
the both standard and enhanced cooling [5S3—57, 174]. More-
over, the superfluidity mixes the cooling types, since the
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enhanced cooling may look like standard cooling while the
standard cooling may look like enhanced (especially if the
neutrino emission due to Cooper pairing is taken into
account, cf. Figs 15a and 15b). In these cases, the star,
independently of its cooling type, remains a good ‘thermo-
meter’ for measuring the nucleon critical temperatures: even
weak variations of T¢, or T, strongly affect the cooling
curves. The only problem is to ‘calibrate’ properly this
thermometer (Sections 3 —6).

Finally, let us mention that Schaab et al. [118] have
considered recently, for the first time, standard and enhanced
cooling in the presence of triplet-state neutron superfluidity
of type C (with the nodes of the gap at the Fermi surface). The
authors based their calculations on the model of neutron
pairing in strong magnetic fields [94] according to which the
field B 2 10'° G makes the pairing of type C energetically
more favorable than that of type B. Let us also note the first
calculations [204] of cooling of a NS with a hyperonic core
taking into account the hyperon superfluidity. We mention,
however, that the authors of Refs [118, 204] made use of
approximate reduction factors of neutrino reactions and
approximate expressions for the neutrino emissivity due to
Cooper pairing of particles.

The theoretical conclusion on the leading role of super-
fluidity in NS cooling was made at about the same time as new
observational data on the surface temperatures of some NSs
appeared (Section 8). The latter data brought the problem of
studying superfluidity in NS cores to reality.

7.2 Cooling simulations

In this section we illustrate the possibility of exploring
nucleon superfluidity in NS cores. We will mainly follow our
recent article [57]. In addition, we include in the simulations a
relativistic correction to the neutrino luminosity produced by
proton pairing (Section 6.1). This affects slightly the cooling
curves at some values of T, and T, but does not change the
main conclusions of Ref. [57].

7.2.1 Simulation scheme. Below we present the results
obtained with the cooling code [54, 133, 156, 157, 205] that
is based on the approximation of isothermal stellar interiors.
The code was mainly developed by O Y Gnedin. The
isothermal approximation is valid for a star of age
t>10-103 yr, inside which the thermal relaxation is over.
The superfluidity strongly affects the surface temperature
only after reaching the thermally relaxed stage. Following
Ref. [147] we have assumed that the isothermal region is
restricted by the condition p > p, = 10'° g cm~3. The real
boundary of the isothermal region is at lower p and depends
on temperature: it moves to the surface in the course of
cooling. The chosen value of p, guarantees that the region
p > py is isothermal in a star of age t 2 103 yr. The quantity
Ti(t) = T(r,t) exp[®(r)] (which may be called the internal
redshifted temperature) is constant over the isothermal region
at any moment of time ¢. Here T(r, ¢) is the local temperature,
&(r) is the dimensionless gravitational potential, and r is the
radial coordinate.

We take into account explicitly the effects of General
Relativity on the NS structure and cooling. The cooling
simulation in the isothermal approximation is reduced to
solving the equation of thermal balance (see, e.g., Ref. [147])
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dT;
(1), = —La(T) = Ly(T3), (85)

) —1/2
C:vadV, dV:4nr2(1— ’i;n) dr, (86)

L= JQexp(2<I>) dV, L, =4nR*eT exp(2®y). (87)

In this case, C is the total heat capacity of the star, ¢y is the
specific heat capacity, and m = m(r) is the gravitational mass
inside a sphere with radial coordinate r. The quantities L,; and
L,; determine the neutrino and photon NS luminosities,
respectively, Q is the neutrino emissivity, @y is the value of
@ at the isothermal region boundary (p=p,), and ¢ is the
Stefan — Boltzmann constant.

The photon luminosity of the star depends on the
effective temperature 7 of its surface. The relationship
between T and the temperature Ty, = Tjexp(—Pp) at p=py,
is determined by the thermal insulation of the outer envelope
(p < pp), where the main temperature gradient is formed. We
have not taken into account the effect of the magnetic field
on the NS cooling and have used the relationship T5(T),
obtained recently [173] for B =0. We assume that the NS
surface may be covered by a thin layer (of mass < 10713 M)
of hydrogen or helium. This amount of light elements is too
small to affect the thermal insulation of the envelope and the
NS cooling but it can affect the spectrum of thermal
radiation. Actually, the effect of the dipole surface magnetic
fields B < 5 x 10'> G on the NS cooling is rather weak [165].
Therefore, our calculations can be used, at least qualita-
tively, for stars with such fields. In these cases, by T, we
mean the average effective surface temperature which
determines the total (nonredshifted) photon surface lumin-
osity of the star as L, = 4noR*T*.

7.2.2 Models of cooling neutron stars. For simplicity, we
assume that the matter of the NS core consists of neutrons,
protons and electrons (muons and hyperons are absent). We
will adopt a moderately stiff equation of state proposed by
Prakash et al. [206] (the version with the compression
modulus Ky, = 180 MeV and the same simplified symmetry
factor Sy that was used in Ref. [5]). The maximum NS mass,
for a given equation of state, is 1.73 M. In order to study the
enhanced and standard cooling we consider NS models of two
masses. In the first case, the NS mass is M = 1.48 M, the
radius R =11.44 km, and the central density
p. = 1376 x 101> g c¢cm~3, while in the second case
M=130M,, R =11.87 km, and p, = 1.07 x 10" g cm~3.
The adopted equation of state opens the direct Urca process
at the density p>p, = 1.30 x 10'5 g cm~3. Therefore, the
M =148 M., NS suffers enhanced cooling: the powerful
direct Urca process (4) is allowed in a small central kernel of
radius 2.32 km and mass 0.035 M. (in addition to the
processes (1)—(3) and (5) throughout the core). In the
M = 1.30 M, NS the threshold value p, is not reached, and
the star has the standard neutrino luminosity, determined by
the processes (1)—(3) and (5). Notice that Levenfish and
Yakovlev [133], while calculating the equation of state, set
the parameter ny (the standard saturation nuclear-matter
density) equal to 0.165 fm~3. In the present calculations we
set nyp = 0.16 fm~3. Owing to this reason the mass of the
rapidly cooling NS model is somewhat different from that
(1.44 M) used in Ref. [133].
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In order to calculate the heat capacity of the superfluid NS
core and its neutrino luminosity due to the reactions (1)—(5)
we have used the equations of Sections 3—6. The results
obtained in these sections are summarized in Section 6.2. The
neutrino bremsstrahlung due to ee scattering in the NS core
has been neglected: we have shown that its effect on the
cooling is negligible, for our NS models. We have also taken
into account the neutrino luminosity of the NS crust due to
bremsstrahlung of electrons which scatter off atomic nuclei
(using an approximate formula proposed in Ref. [123]):
Lie = 1.65 X 10 (M /M) x (T /10° K)® exp(2y) erg
s~!, where M., is the crust mass. In our case, M, = 0.0120M
for the M = 1.48M model, and M. = 0.0153M, for the
M = 1.3M; model. The NS heat capacity has been set equal
to the sum of the partial heat capacities of n, p and ¢ in the
stellar core; the contribution of the crustal heat capacity has
been neglected due to the smallness of the crust mass for the
chosen NS models. In the calculations of the neutrino
luminosity and the heat capacity the effective masses of
neutrons and protons in the NS cores have been taken as
my = 0.7mn.

Various microscopic theories of Cooper pairing in the NS
cores give a very wide scatter of the critical temperatures of
the neutron and proton superfluids, 7, and T¢p (~ 107 —10'°
K), and various density dependences of these temperatures
(Section 3.1). Thus we have made a simplified assumption
that the critical temperatures T¢, and T, are constant
throughout the NS core and may be treated as free para-
meters. This is the main simplification of our simulations. We
assume that protons suffer 'Sy-state pairing (superfluidity of
type A, Table 1) and neutrons suffer 3P,-state pairing with
zero projection of the pair moment onto the quantization axis
(superfluidity of type B). We will study the cooling for
different values of T, and T¢p, and we will determine (Section
8.2.2) those values which are in better agreement with
observations.

As already mentioned in Section 7.1, the difference
between the enhanced and standard cooling regimes is
smeared out in the presence of superfluidity. Under these
conditions, the cooling regime formally indicates whether
direct Urca is allowed or forbidden in the NS core.

7.2.3 Results. We have calculated about 2000 NS cooling
curves. The curves describe the dependence of the effective
surface stellar temperature 7¢° = Tiy/1 —Rg/R, as
detected by a distant observer, on age t; here, R, is the
gravitational NS radius. For M =130M, and
M =148 M we have T2°/T; = 0.822 and 0.786, respec-
tively. The critical temperatures of neutrons and protons,
Ten and T, in the NS core have been varied over a wide
interval from 10° to 10'° K.

Examples of the cooling curves for selected values of T,
and T, were already discussed above (Figs 15a and 15b).
However it is rather inconvenient to analyze the results in the
form of the cooling curves. It is better to plot the values of T,
and T, which lead to certain surface temperatures 73° of the
NS of given age ¢. Figures 16— 19 present the results in this
way. For example, we have chosen the values of ¢, which
correspond to the ages of the Geminga pulsar (3.4 x 103 yr,
Figs 16 and 18) and PSR 0656+ 14 (10° yr, Figs 17 and 19).
Observational data on these and other cooling NSs are given
in Section 8.1.

Before discussing the results of calculations let us recall
some relationships which determine the main features of the

—_
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Figure 16. Lines of values of T¢, and T, which correspond to certain
internal temperatures 7; (the values of lg 7; are given near the curves) or
surface temperatures 7.° (given in Table 2) of a NS with enhanced
neutrino luminosity (1.48 M) and Geminga’s age (3.4 x 10° yr). The
region of joint neutron and proton superfluidity (in the center and the
upper right corner) is enclosed by the dashed lines. A small region where
the superfluidity does not appear by the given age (the left lower corner) is
separated by the thick solid line.
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Figure 17. Same as in Fig. 16, but for a NS of the age of PSR 0656+ 14
(103 yr).

NS cooling. We will use these relationships for describing
Figs 16—19.

The effects of neutron and proton superfluidities on the
heat capacity are different. In a non-superfluid NS, the heat
capacities of p and n constitute ~ 1/4 and ~ 3/4 of the total
heat capacity Ci,, respectively. Therefore, a strong super-
fluidity of p reduces Ciot by ~ 25%, while a strong super-
fluidity of n reduces it by about 4 times. When the ratio of the
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Figure 18. Isotherms of the internal temperature 7; (or the surface
temperature 7,°, Table 2) for a NS of Geminga’s age, as in Fig. 16, but
for standard cooling (1.30 M,).
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Figure 19. Same as in Fig. 18, but for a NS of the age of PSR 0656 + 14.

internal stellar temperature 7; to a critical nucleon tempera-
ture Tcn decreases from 0.3 to 0.1 (for instance, in the course
of NS cooling), the heat capacity of nucleons N =n or p
decreases by more than three orders of magnitude and
becomes much lower than the heat capacity of electrons.
Further reduction of the nucleon heat capacity does not
change the total heat capacity. The appearance of the weak
superfluidity of nucleons N almost doubles their heat
capacity due to the latent heat release at the phase transition.
The heat capacity of nucleons remains higher than the heat
capacity of non-superfluid nucleons as long as Ti/TeN
decreases from 1 to 0.3, i.e., as long as the difference of
temperature logarithms is g Ten — 1g 75 < 0.5.

The effects of the superfluidities of » and p on the NS
neutrino luminosity are also different. For the direct and
modified Urca processes this difference is weak. If Cooper-
pairing neutrino emission were neglected, the asymmetry of
Figs 16— 19 with respect to inversion of the axes Tcy 2 Top,
would be mainly explained by different contributions of n and
p to the heat capacity. This can be proved by comparing Figs
16—19 with analogous figures in Ref. [133], where the
neutrino emission due to Cooper pairing was neglected.
Inclusion of the Cooper-pairing neutrinos greatly amplifies
the asymmetry: the neutrino emission due to proton pairing is
weak, while the emission due to neutron pairing dominates
over the standard neutrino losses for 7; < 10° K < T, and
over the direct Urca process for 7; S Ten < Tcp. The main
neutrino energy release in the process takes place at
0.2 < T;/Ten < 0.96 (as long as the difference of the tempera-
ture logarithms is g T, — 1g 77 < 0.7).

7.2.4 Enhanced cooling. Figures 16 and 17 illustrate the
enhanced cooling of NSs of the ages of the Geminga and
PSR 0656 + 14 pulsars.

Figure 16 shows isotherms of the internal temperature 7;
of a NS of Geminga’s age versus T, and T¢p,. Since the
temperature is related to the surface temperature, the same
lines are isotherms of the surface temperature 7.° (Table 2).
Dashes exhibit the auxiliary lines which enclose the region of

Table 2. Relationship between 7; and 7 for Figs 16—19.

M =148M M =1.30M
IgTi, K lg T, K IgTi, K lg T, K
5.10 4.53 5.73 4.8
5.30 4.61 5.75 4.79
5.50 4.68 5.83 4.82
5.70 4.76 5.90 4.85
5.90 4.84 5.98 4.88
6.05 491 6.30 5.02
6.20 4.98 7.00 5.37
6.36 5.05 7.21 5.48
6.40 5.07 7.23 5.49
6.44 5.09 7.29 5.53
6.57 5.16 7.32 5.54
6.60 5.17 7.34 5.55
6.61 5.18 7.38 5.57
6.65 5.20 7.43 5.60
6.73 5.24 7.52 5.65
6.80 5.28 7.54 5.66
6.89 5.32 7.58 5.69
7.00 5.38 7.65 5.72
7.07 5.42 7.67 5.74
7.20 5.49 7.70 5.75
7.25 5.52 7.75 5.78
7.40 5.60 7.79 5.80
7.43 5.62 7.80 5.81
7.60 5.71 7.81 5.81
7.61 5.72 7.83 5.82
7.77 5.81 7.85 5.84
7.79 5.82 7.86 5.84
7.87 5.86 7.88 5.85
7.97 5.92 7.89 5.86
8.10 5.99 7.98 591
7.99 591
8.01 5.93
8.05 5.95
8.06 5.95
8.12 5.99
8.14 6.00
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joint superfluidity of nucleons. The region to the left of the
upper dashed line corresponds to the superfluidity of protons
and normal neutrons, while the region to the right of the lower
line corresponds to the superfluidity of neutrons and normal
protons. The dashed lines intersect at the isotherm of
temperature 7; = 10%* K, to which a non-superfluid star
would cool by the moment ¢. This isotherm, plotted by a
thick line, encloses the region where the nucleon superfluidity
has not appeared by the moment ¢ and does not affect the
cooling. Notice, that owing to the effects of General
Relativity, the isotherms 7; correspond to somewhat higher
local temperatures of matter (see above). Thus, the isotherm
T; = 1054 K is associated with values of Ty which are slightly
higher than T;.

First we discuss the behavior of isotherms to the right of
the lower auxiliary line. The vertical segments of the
isotherms reveal that the NS cooling is governed only by
the superfluidity of n. With increasing T, at lgTe, 2 7.7,
the core temperature 7; grows which can be explained in the
following way. The higher T,, the earlier the neutron
superfluidity appears. Accordingly, the powerful direct
Urca process is suppressed earlier, the cooling delay is
longer, and the NS is hotter at a given ¢. For low T, the
NS cools down in a non-superfluid state almost all its life
and is sufficiently cold by the age 7. The neutrino luminosity
of such a star is rather weak and becomes comparable to the
photon luminosity. Additional neutrino energy losses due to
neutron pairing at 1g T, 2 6.6 slightly accelerate the cool-
ing at 6.6 <1gTe, £6.6+0.7. However, for
lg Ten < 6.6+ 0.5 the acceleration is compensated by the
latent heat release produced by the jump of the neutron heat
capacity. The values 0.7 and 0.5 have been explained above.

Vertical segments of the isotherms intersect the auxiliary
line at temperatures T¢p, at which the proton superfluidity
appears. With a further increase of T, the NS heat capacity
(determined by protons for lg T, % 7.4) approximately
doubles. The latent heat release increases 7;: in a strip of
width 0.5 in Ig T, above the lower dashed line the isotherms
shift to the left. With further growth of T¢;, the heat capacity is
strongly reduced, the NS becomes cooler and the isotherms
shift to the right.

In a similar fashion, exchanging the proton and neutron
superfluids, we can explain the horizontal segments of the
isotherms to the left of the upper auxiliary line. In this case
acceleration of the NS cooling in the range Ig T, R 6.6 does
not appear because of the weakness of the neutrino emission
produced by proton pairing. A strong proton superfluidity
suppresses the heat capacity more weakly than a neutron
superfluidity with the same critical temperature. Therefore, at
high T, the star is warmer than for the same T, for the
vertical segments of isotherms in the lower right part of the
figure.

The horizontal segments of the isotherms intersect the
upper auxiliary line at temperatures 7., which switch on the
neutron superfluidity. This superfluidity induces latent heat
release and associated slight NS heating (dips on the
isotherms to the right of the auxiliary line). With increasing
T¢p, the NS heating produced by the neutron superfluidity
becomes weaker and disappears (the dips vanish). The effect
is mainly caused by neutrino emission due to neutron
pairing which is more pronounced if the direct Urca process
is strongly suppressed. At high 7¢, the neutron pairing
becomes the main neutrino emission mechanism. Since
neutrino emission due to the neutron pairing is more

efficient than the latent heat release the appearance of
neutron superfluidity with the growth of T, does not
delay the cooling but, on the contrary, accelerates it. A
noticeable NS cooling via Cooper-pairing neutrinos takes
place in a strip of width 0.7 (in 1g T¢,) to the right of the
upper dashed line. Lower and to the right of this strip the
cooling is associated with reduction of the neutron heat
capacity.

Now consider the region of T¢,, T¢, between the auxiliary
lines in more detail. Some increase of T; atlg T, < 6.6 + 0.5
and Ig Tp < 6.6 + 0.5 is caused by the latent heat release at
onset of superfluidity of n and p. Further growth of T¢, ~ Ty
induces an initially rapid decrease and then a weak increase of
Ti. The decrease is explained by exponential reduction of the
heat capacity by the joint superfluidity of n and p while the
weak increase is associated with reduction of the direct Urca
process at the early cooling stages.

Figure 17 is analogous to Fig. 16, but corresponds to a
younger NS of age 10° yr. Figures 16 and 17 show that one
needs T¢, < Tep or Tey < Tgp to support a high surface
temperature 7.° (or T;) for a longer time.

7.2.5 Standard cooling. Standard cooling of a 1.30 M NS is
illustrated in Figs 18 and 19 for the stars of Geminga and PSR
0656 + 14 ages, respectively. The isotherms are qualitatively
different from those for the enhanced cooling (cf. with Figs 16
and 17): even an approximate symmetry of the neutron and
proton superfluidities is absent. The asymmetry can be
attributed to the weakness of the standard neutrino energy
losses. First, in the absence of such a powerful cooling
regulator as the direct Urca process the difference of the
heat capacities of n and p (see above) is more pronounced.
Second, the Cooper-pairing neutrino emission becomes more
important on the background of weaker neutrino emission
produced by other neutrino reactions; the Cooper-pairing
emission is asymmetric itself, being more efficient for neu-
trons than for protons.

If the superfluidity is absent, a NS (1.30 M) enters the
photon cooling stage at f, ~ 1.6 x 103 yr. Thus the PSR
0656 + 14 pulsar appears to be at the transition stage and
Geminga at the photon stage. The neutrino luminosity is
already weak and the superfluidity affects the cooling mainly
either through the heat capacity or through the neutrino
emission due to Cooper pairing of neutrons and, to a less
extent, of protons.

Consider, for instance, Fig. 18. Two dashed auxiliary
lines enclose the domain of joint superfluidity of nucleons.
To the left of the upper line protons are superfluid and
neutrons not, while below the lower line only neutrons are
superfluid. The lines intersect at the isotherm of the
temperature lg 7; =~ 7.81, which a non-superfluid NS would
have by the age 7. The superfluidity with g 7., £ 7.9 and
lg Tep < 7.9 does not appear by the moment ¢ and does not
affect the cooling.

Horizontal segments of isotherms to the left of the upper
dashed line show that the cooling is regulated by the proton
superfluidity alone. For g7, 2 7.9 K, the superfluidity
appears just before the given moment ¢ and is weak. In the
range 7.9 S 1g Tep < 7.9 + 0.5 it initiates latent heat release
and a weak increase of the total heat capacity (determined
mainly by normal neutrons). In the range
7940.1 $ Tep $7.940.7 the weak increase of the heat
capacity is compensated by the (also weak) increase of the
neutrino emission due to pairing of protons. As a result, T;
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initially increases, and then decreases. For 1g T¢, % 8.4, the
proton heat capacity is reduced, and the total NS heat
capacity decreases by ~ 25%. On the other hand, for high
T¢p, the proton superfluidity onset is shifted to the neutrino
cooling stage. The cooling delay produced by the suppression
of the neutrino luminosity in the neutrino era is somewhat
stronger than the cooling acceleration produced by the effect
of superfluidity on the heat capacity. Thus 7} continues its
growth with increasing T¢p,.

Horizontal segments of the isotherms end at tempera-
tures T., ~ 10% K, at which the neutron superfluidity is
switched on. The neutron pairing induces a splash of
neutrino emission and cooling acceleration in a strip of
width 0.7 (in 1g T,) to the right of the auxiliary line. The
minimum of 7; occurs in the interval 8.5 S lg T, < 8.7,
because at 8.0 < lgTe, £ 8.0+ 0.5 the neutrino energy
losses are partly compensated by the latent heat release.
The lowest temperatures 7; are realized in the case
T, > 108 K, in which the nucleon heat capacity suffers
the strongest suppression.

On vertical segments of the isotherms below the lower
dashed line the cooling is regulated by the neutron super-
fluidity alone. With growing T, in this domain, the tempera-
ture 7 varies in the same manner as with growing T¢, in the
domain of the purely proton superfluidity. This happens
because at Ig T, 2 7.9 the neutrino emission due to neutron
pairing is important. It speeds up the NS cooling in the range
79<51gTe £79+0.7 (see above). If
7.9 <lgTey £ 7.9 + 0.5, the neutrino cooling is partly com-
pensated by the latent heat release. Therefore the minimum of
T; occurs in the range 7.9 + 0.5 S 1g Ty < 7.9 + 0.7. It is not
so deep as in the upper part of Fig. 18 since the nucleon heat
capacity is now suppressed only partly.

A strong neutron superfluidity reduces the heat capacity
more strongly and the neutrino luminosity more weakly than
a strong proton superfluidity. Owing to the weakness of the
neutrino energy losses this difference is sufficient for a NS
with high T¢,, and normal p to cool in a different way than at
equally high T, and normal n. The strong neutron super-
fluidity delays the cooling of those NSs which would be at the
neutrino cooling stage or at the neutrino-photon transition
stage if they were non-superfluid. This is demonstrated in Fig.
19 (for PSR 0656+ 14); in the absence of superfluidity at
t = 103 yr the pulsar would be at the transition stage. The
strong neutron superfluidity accelerates the cooling of older
NSs, e.g., of Geminga’s age (Fig. 18).

The vertical segments of isotherms in Fig. 18 intersect the
auxiliary line at temperatures T, at which the proton
superfluidity appears. This superfluidity leads to latent heat
release and to the growth of 7; in a strip of width 0.5 in g T,
above the lower dashed line. With further growth of T, the
heat capacity is strongly reduced and the cooling is acceler-
ated. For a very strong joint superfluidity of n and p
(Ten > 1077 K, T, > 107 K, the very right upper corner of
Fig. 18), the nucleon heat capacity and the neutrino luminos-
ity of the NS core are fully suppressed, and the cooling is
governed by the electron heat capacity.

Figure 19 is analogous to Fig. 18, but corresponds to a
younger NS. Its neutrino luminosity is somewhat higher and
the relative contribution of nucleon-pairing neutrinos is
smaller. The neutrino emission produced by pairing affects
the cooling more weakly.

Comparison of the present calculations with observations
will be made in the next section.

8. Thermal emission from neutron stars and
superfluidity in their cores

8.1 Thermal emission from neutron stars

8.1.1 Observations of X-ray emission from neutron stars. In the
very first article devoted to NSs Baade and Zwicky [207]
predicted that NSs should be born hot and cool gradually
emitting thermal radiation. Since NSs are compact, their
radiation is weak. Modern detectors are able to register it
only from the closest (D £ 1-2 kpc) and sufficiently hot
(Ts 2 10°-10° K) isolated NSs. The main radiation flux for
the surface temperatures Ts mentioned above is emitted in the
soft X-ray and hard ultraviolet spectral ranges (0.01 — 1 keV),
which are thus most favorable for observations. This radia-
tion, however, is strongly absorbed by the Earth’s atmosphere
and can be detected only from balloons, rockets and space
observatories.

Attempts to discover NSs from their thermal surface
emission undertaken in the middle of 1960s in the first balloon
experiments with X-ray detectors were not successful. NSs
were discovered later, in 1967, as radio pulsars [208]. Soon
afterwards they were also discovered in X-rays as X-ray
pulsars, X-ray bursters and transients; however, the radiation
from these objects is determined by accretion of matter onto
the NSs in binary systems, but not by outflow of thermal
energy from the interiors of cooling NSs. A search for
intrinsic thermal radiation from NSs was continued.

In 1975 Wolff et al. [209] as well as Toor and Seward [210]
attempted to detect the thermal radiation of the Crab pulsar in
a balloon experiment during a lunar occultation of the pulsar.
The thermal radiation was not detected but the upper limit of
the surface temperature of the pulsar was established which
does not differ considerably from the present upper limit.

Subsequent observations were mainly carried out in the
soft X-rays with the X-ray telescopes on board the orbital
observatories Einstein (1978—1981), EXOSAT (The Eur-
opean X-Ray Observatory Satellite, 1983—-1986), ROSAT
(The Rontgen Satellite, 1990—1998), ASCA (The Advanced
Satellite for Cosmology and Astrophysics, operating since
1993) and RXTE (The Rossi X-ray Timing Explorer,
launched in December, 1995). In these studies, various types
of detectors have been used: gaseous (scintillation) photon
proportional counters which possess moderate spectral reso-
lution (from ~ 8 to 40%, depending on the detector scheme
and photon energy) and rather large angular resolution
(~ 12" -3"); solid-state microchannel photodetectors with
high angular resolution (down to 3”) but giving almost no
spectral information; solid-state CCD matrices with higher
spectral resolution (to 3%) than the gaseous detectors, but
worse angular resolution (1) than the microchannel photo-
detectors. Temporal resolution (0.001 — 0.5 ms), in most cases,
enables one to study variations of the radiation fluxes
concerned, for instance, with NS rotation. By the moment
of completing this review the best angular, spectral and
temporal resolutions were possessed by, respectively: the
microchannel X-ray detector HRI (High Resolution Imager)
on board ROSAT (~ 5" in the energy range 0.1—2.5 keV), the
detector SIS (Solid-state Imaging Spectrometer) on board
ASCA (0.4-10 keV, AE/E~2% for photon energy
E~ 6 keV) and PCA (Proportional Counter Array) on
RXTE (~ 1 ps in 2—60 keV range). X-ray detectors have
high sensitivity. For instance, the ROSAT observatory was

able to detect sources with a flux ~ 5 x 10~ ergecm =257,
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Orbital observatories have led to great progress in the
search for thermal NS radiation. Soft X-ray radiation has
been detected from about thirty radio pulsars and from
several isolated radio silent NSs. Thermal component has
been identified sufficiently reliably in ~ 20% of cases !.

A search for the thermal radiation from NS surfaces was
also carried out with the ultraviolet observatory EUVE (The
Extreme Ultra-Violet Explorer, operating since 1992) using
the DS (Deep Survey) and ST (Scanning Telescope) tele-
scopes, sensitive in the photon energy range 70— 760 eV, with
the angular resolution ~ 30—45" (using wideband filters 40 —
190 A and 160—-238 A). About 20 known NSs were observed
[211]. Five sources were detected in the 40— 190 A band. Two
of them, PSR 0656+ 14 and Geminga, are cooling pulsars,
and one, RX J1856-37, is an isolated (probably cooling) radio
silent NS. For other objects, the upper limits to the ultraviolet
fluxes were obtained.

Since 1978 wideband photometric observations of iso-
lated NSs have been carried out in optics using sensitive
ground-based telescopes such as ESO-NTT (The New Tech-
nology Telescope of the European South Observatory), the
Keck Telescope, the 6-meter Telescope, and the orbital HST
(the Hubble Space Telescope, launched in 1990). About ten
radio pulsars have been identified as optical sources [212]. As
arule, the luminosity of isolated NSs in optics is several orders
of magnitude weaker than in X-rays. This serves as an
additional argument in identifying point-like X-ray sources
as isolated NSs, especially if they are not pulsars. The point-
like X-ray sources associated with accreting NSs in close
binaries in pairs with normal stars (X-ray pulsars, bursters,
transients) usually show higher optical fluxes due to the
contribution of companions or accretion disks. Multicolor
photometric observations have been carried out for several
isolated NSs (PSR 054069, PSR 1509-58, PSR 0656 + 14,
Crab, Vela, Geminga), while for others (PSR 1929 + 10, PSR
0950+ 08, PSR 1055-52, RX J185635-3854, RX J0720.4—
3125) the fluxes have been measured with one or two filters
only. Recently Martin et al. [213], using the 10-meter Keck
Telescope, obtained the first optical spectra (with ~2A
resolution), of Geminga, the isolated middle-aged pulsar.
Earlier the spectroscopic observations were carried out of
only two young pulsars, Crab and PSR 0540-69, whose
optical emission is non-thermal. Recently Shearer et al. [214],
using the MAMA (Multiple Anode Microchannel-Plate
Array) detector with high temporal resolution and the 6-
meter Telescope, discovered temporal variations of the
optical emission (in the B-filter) from Geminga and PSR
0656 + 14, cooling medium-aged NSs; the radiation pulsates
with the NS spin periods. Earlier, pulsating optical emission
had been observed only from several young pulsars (including
Crab, Vela, PSR 0540-69) with spectra of a clearly non-
thermal origin. The energy of the non-thermal emission is
taken mainly from the NS spin energy.

The optical and ultraviolet observations complement the
X-ray spectra with data in Rayleigh-Jeans part of the
spectrum. This enables one to get more definite conclusions
on the spectrum type (thermal or non-thermal) and on the
parameters of the NS atmospheres. Interpretation of the
thermal radiation has to be consistent with observations of
the non-thermal emission from pulsars and nearby space in

I More detailed information on active and future detectors can be found,
for instance, through the Internet site http://heasarc.gsfc.nasa.gov/docs/
heasarc/missions.html.

radio, X-rays and gamma-rays. Finally, one should use
modern atmospheric models of NS radiation for a correct
interpretation of observations.

8.1.2 Interpretation of observations. The discovery and inter-
pretation of the thermal radiation from cooling NSs is a
complicated problem. As mentioned above, the radiation is
weak since the NSs are compact. The radiation has to be
separated from the surrounding background which is espe-
cially difficult for young NSs in supernova remnants. The
strong background is created by non-thermal emission of
synchrotron nebulae (plerions) which are formed around
young and active pulsars. The background is also produced
in non-thermal processes of emission of X-ray and optical
quanta in the magnetospheres of radio pulsars. The distances
to NSs are known poorly (the uncertainty is often some ten
percent or higher). The next difficulty is provided by
interstellar gas which absorbs the soft part of the spectrum
(from a fraction of keV down to optics), especially for objects
which are more distant than some hundred pc or are obscured
by local clumps of interstellar gas. Finally, the thermal
radiation from the main part of the pulsar’s surface is
superimposed by the thermal radiation from the hotter
(~ (2-3) x 10° K) polar caps heated by fluxes of energetic
particles from the magnetosphere. The spectra of both
thermal components and the power-law spectrum of the
possible non-thermal component strongly overlap which
complicates interpretation even more.

It is clear that the medium-aged radio pulsars
(~ 10*-10° yr) are most favorable for studies of thermal
radiation. Their surface is still rather hot, Ty ~ 105—10° K,
enough to be observable but the objects are already insuffi-
ciently active to support synchrotron nebulae around them.
Supernova remnants are dissolved by the given age, and the
non-thermal magnetospheric processes weaken due to pulsar
spin down. All these factors reduce the background and
increase the chances of discovering radiation from the pulsar
surface. The isolated NSs which, for some reason, do not
show pulsar activity from the early stage, for instance, due to
the weak magnetic field or rapid spin down are of special
interest for the cooling theory. These stars should possess a
lower background of non-thermal emission which simplifies
detection of the thermal component (see below).

An observer who studies X-ray radiation from cooling
NSsusually has a poor set of observational data in the form of
photon count rates in various spectral channels of a detector;
the count rates do not exceed, for instance, 1—10 counts per
second for the brightest objects detected with PSPC (Position
Sensitive Proportional Counter) on board ROSAT. For the
majority of isolated NSs observed with ROSAT, the count
rate is ~ 1073-10"2 counts per second; therefore, the
exposure time should exceed ten hours to accumulate a
statistically significant number of counts (e.g., 100—1000).
Data processing and reconstruction of the real spectrum of
the NS radiation is an example of a classical incorrect inverse
problem which can be solved only under additional assump-
tions on the spectrum of the source. The spectral analysis is
usually carried out by calculating the count rates in different
channels by ‘transmitting’ a model spectral flux of the object
through the response matrix of a detector; calculated values
are then compared with observations. A model flux depends
on NS parameters such as distance, column density of
interstellar hydrogen, etc. These parameters are varied (for
instance, by the > method) to obtain the best agreement with
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observations. However the response matrix is usually known
with some uncertainty. Its parameters vary in time and
require permanent checking using calibration sources on
board a space observatory or cosmic standard sources. The
model spectrum may be multicomponent; for instance, it may
contain contributions of thermal emission from the main part
of the pulsar surface and from the hot polar caps as well as
non-thermal magnetospheric emission. While fitting the
spectrum one can, in principle, determine all the varying
quantities: parameters of the NS thermal radiation (effective
temperature, magnetic field and chemical composition of the
surface), parameters of the hard radiation component (tem-
perature and sizes of polar caps), the spectral index and
intensity of the non-thermal component, the spin period, the
NS radius and mass, the distance, the column density of
interstellar gas, etc. Additional constraints on the variable
quantities can be obtained from similar fitting of X-ray light
curves.

A complete realization of the above scheme is not
possible, to date, mainly because of the poor statistics of
photon counts and the poor spectral resolution of the
detectors. Another obstacle comes from incompleteness of
the theory of magnetospheric pulsar emission and the theory
of atmospheres of isolated NSs with strong magnetic fields.
The non-thermal magnetospheric radiation is usually
described by a power-law spectrum with an index determined
from fitting. In the absence of atmosphere models, the
thermal NS radiation is often described by a black body
spectrum. However, the properties of radiation emerging
from a NS are actually determined by a thin atmosphere
with the temperature growing inside the star. The atmo-
spheric spectrum may significantly differ from black body.
This is proved by the well elaborated models of NS atmo-
spheres with ‘weak’ magnetic fields B < 10°-10' G [215,
216, 7] and hot atmospheres (7, > 10° K) with strong fields
B2 10'' G [6, 7]. In particular, the radiation spectra from
weakly magnetized NSs covered with atmospheres of light
elements (hydrogen, helium) appear to be harder for the same
effective temperature 75. For typical temperatures
T, ~ 10°-10° K, the light elements are almost completely
ionized; the main contribution to opacity comes from free-
free transitions which are well described by the Kramers
formula (the spectral opacity decreases as E—3 with the
growth of photon energy E). This makes the atmosphere
more transparent for higher-energy photons, which emerge
thus from deeper and hotter layers, leading to hardening of
the spectrum. In the atmospheres of heavier elements (iron),
which are more difficult to ionize, the photoeffect and bound—
bound transitions are most important. This leads to a weaker
energy dependence of the opacity on the photon energy. The
radiation spectrum becomes closer to that of black body, with
a temperature corresponding to some mean depth from which
the quanta emerge. In this case the almost Planckian
continuum contains deep and wide photoionization jumps
and absorption lines of atoms and ions of heavy elements. In
contrast to the black body emission, the atmospheric radia-
tion is anisotropic even for NSs with weak magnetic fields.
The anisotropy depends on photon energy and chemical
composition; the well known ‘limb darkening’ effect is quite
pronounced. The anisotropy is greatly amplified by a strong
magnetic field. In this case, the anisotropy axis is aligned
along the magnetic field and the radiation beaming can be
strongly asymmetric. An allowance for the anisotropy and
gravitational bending of photon trajectories near the NS

surface [217] is especially important for interpretation of the
light curves.

To date, among the models of NS atmospheres with
strong magnetic fields, B 2 10'°—~10!! G, only the models of
hot atmospheres (T > 10° K) composed of fully ionized
plasma are reliable. According to these models, the radiation
spectrum becomes softer than for weaker magnetic fields, but
remains noticeably harder than the Planck spectrum. For
lower temperatures, the magnetized atmospheres become
partly ionized. The strong magnetic fields drastically distort
the structure of atoms and ions and affect the spectral opacity.
Detailed calculation of the opacity is complicated and has not
been done yet even for the simplest case of a hydrogen plasma.
The magnetic field increases the binding energies of electrons
in atoms. For instance, the field B ~ 10'> G amplifies the
binding energy of the hydrogen atom to ~ 150 eV. The
number density of neutral atoms becomes larger increasing
the role of the photoeffect and bound—bound transitions;
these processes must be calculated with allowance for thermal
motion of atoms. Such calculations are complicated since the
electric fields induced in an atom-comoving reference frame
due to atomic motion across the magnetic field are so strong
that they change the structure of atomic energy levels and
probabilities of radiative transitions (the dynamic Stark-
effect; see, e.g., Ref. [218]). While calculating the opacity of
this partly ionized plasma it is important to take into account
the effects of plasma non-ideality and pressure ionization.
These calculations are being performed at present. Only
models of hydrogen and iron atmospheres neglecting the
dynamic Stark effect have been constructed so far [219, 220].
The dependence of the radiation spectrum on chemical
composition has the same tendencies as for the atmospheres
with a weak field. The spectra of the iron atmospheres are
softer and closer to those of black body than the spectra of the
hydrogen atmospheres. An account for the induced electric
fields, which strongly broaden the photoionization jumps and
other spectral features, will enable one to check the above
statement.

Owing to the effects mentioned above an ‘atmospheric’
temperature T appears to be significantly lower (typically, by
a factor of 1.5-3) than a ‘black body’ temperature in the
interpretation of the same observational data. If the validity
conditions of the available atmosphere models are fulfilled,
then the spectra of the thermal radiation and the NS light
curves are better fitted by the atmosphere models than by the
black body. The parameters inferred from atmospheric
interpretation (emitting surface area, distance to the NS,
column density of the interstellar gas, etc.) are, as a rule, in
better agreement with the data provided by independent
observations in other spectral bands (see, e.g., Refs [221,
222]). The black body interpretation often gives less realistic
parameter values and meets some difficulties in explaining all
the set of observational data.

Since the statistics of count rates are commonly poor and
the number of adjustable parameters is large, the confidence
ranges of these parameters are often too wide. To make them
narrower some parameters are fixed (NS mass and radius,
distance, etc.). The parameters then become more con-
strained. In a sense, this is an illusion if not confirmed by the
results of independent observations (e.g., in other spectral
bands). For instance, radio observations of non-thermal
pulsar emission are very useful for the interpretation of X-
ray observations. They give additional constraints on the
distance from parallax measurements, on interstellar extinc-
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tion from dispersion measure determination, on orientation
of the NS spin and magnetic axes from polarimetric measure-
ments, on pulsar age from measurements of the spin down
rate, on the stellar mass from measurements of orbital
parameters of binary systems containing NSs, etc. Additional
constraints can also be obtained from optical and gamma-ray
observations.

8.1.3 Observational results. As a result of a more than 30-year
search for thermal radiation, X-ray radiation has been
discovered or upper limits of the surface temperature have
been obtained for some tens of isolated NSs [223, 224].
However, so far the discovery of the thermal component can
be regarded as definite only in several cases. These cases
include the four closest medium-aged radio pulsars (Vela,
Geminga, PSR 0656 + 14 and PSR 1055—52) and three fairly
young radio silent NSs in supernova remnants (1E 120752
in the remnant PKS 1209-51/52, RX J0002 + 62 near CTB-1
and RX J0822-4300 in Puppis A). All seven sources are
reliably identified; their nature as isolated NSs is confirmed
by observations of periodic pulsations (excluding 1E 1207 -
52), produced by stellar rotation, and/or the large ratio of the
X-ray to optic luminosities. These NSs are listed in Table 3 in
accordance with their age. For each star, we give its
characteristic age (determined either from the NS spin down
rate or from the morphology of a supernova remnant), the
spin period, the method of interpretation of the thermal
spectrum, the effective surface NS temperature
T* =Ts/1—(Rg/R) (Section 7.2.3) determined by this
method, and the distance to the source.

Among the ‘atmospheric’ interpretations presented in
Table 3, those for 1E 120752, RX J0002+ 62, RX J0822—
43 and the Vela pulsar seem to be the most reliable. The
interpretation of their spectra with hydrogen—helium atmo-
sphere models has an additional advantage: the fits of
observational data with iron atmosphere models or with the
black body spectrum are of lower statistical significance.
Geminga and PSR 0656+ 14 are older and cooler. An
important contribution to the opacity of their atmospheres
comes from the effects of motion of neutral and partly ionized
atoms across a strong magnetic field (see Refs [225, 226] and
also Section 8.1.2). The presented interpretations have been
made using simplified atmosphere models in which these
effects have been neglected. The hydrogen composition of
Geminga’s atmosphere is additionally confirmed by a possi-
ble discovery of the proton cyclotron line in its optical
spectrum [227, 213]. The ‘atmospheric’ temperatures of
Geminga and PSR 0656 + 14 are likely to be closer to reality
than the ‘black body’ temperatures but less reliable than for
younger NSs.

Comparison of the surface temperatures of the objects
from Table 3 with the simulations of NS cooling will be
discussed in Section 8.2. In this discussion we will assume that
the ‘atmospheric’ and ‘black body’ interpretations of obser-
vations are equally acceptable and obtain constraints on
critical temperatures of nucleon superfluidity in the NS
cores. Here we will outline some other observations.

The upper limits of T for the majority of other objects are
too high to be of interest for the NS cooling theory. Let us
mention only the upper limit of the surface temperature of the
young Crab pulsar. Numerous attempts to detect thermal
radiation from the pulsar have failed due to the powerful non-
thermal radiation from the magnetosphere and supernova
remnant over a wide spectral range. The most stringent upper

limit 7> =1.55x 10° K was obtained by Becker and
Aschenbach [228] from the ROSAT observations. Taking
into account the uncertainty in distance and interstellar
absorption, this upper limit does not contradict the standard
cooling of the Crab pulsar (with a non-superfluid core)
although for stiffer equations of state the agreement is rather
questionable. Let us mention that the surface temperature of
Crab can be estimated independently from observations of
after-glitch relaxation. According to the theory, this relaxa-
tion depends on the internal NS temperature, and the internal
temperature is related to the surface one. Such estimates are
not very definite but give 7> a2 1.6 x 10° K [229], in excellent
agreement with the above upper limit.

There are about ten more potential candidates to the
cooling isolated NSs among radio silent compact X-ray
sources in addition to those listed in Table 3. New observa-
tions are required to confirm that these sources are cooling
NSs. The two most probable candidates are the point-like X-
ray objects in the young supernova remnants: 1E 1841 —045in
the center of Kes 73 and 1E 161348 —15055 in the center of
RCW 103. Both objects have close black body temperatures,
Ts ~ 0.7 and ~ 0.6 keV. Such temperatures are too high for
ordinary cooling NSs of supernova remnant ages,
~ 2000—-4000 yr [230, 231]. However, for 1E 1841—045, the
above age agrees with its dynamic age determined from the
spin down rate (from observations of coherent pulsations of
X-ray emission discovered recently), P=11.8 s and
P =473 x 107" ss7!1[232]. The standard (for radio pulsars)
estimate of the magnetic field from P and P reveals the
enormous field strength B~ 10" G. Optical and radio
emission from the objects has not been discovered. If
confirmed in future observations (in accord with preliminary
estimates [166]), these data can be explained by the thermal
radiation from young cooling NSs with superstrong magnetic
fields and with outer shells composed of light elements. The
presence of a superstrong field and a shell increases the
thermal conductivity of the outer layers and, as a conse-
quence, increases the surface temperature at the early cooling
stage. For the second source, 1E 1613485055, this hypoth-
esis should be treated with great care due to the recently
discovered mysterious increase of luminosity for several
months accompanied by an increase of the X-ray flux by an
order of magnitude with an unchanged spectrum [233]. A
search for pulsations with the NS spin period has not been
successful so far for this object, which has been observed
regularly in X-rays since 1979.

The sources of repeating soft gamma-ray emission (SGRs
— soft gamma repeaters) possibly belong to the same family
of cooling NSs with a superstrong magnetic field (called
‘magnetars’ [234]). However, they probably undergo a
different evolutionary stage. All of them are located near
supernova remnants which indicates that they are young. For
two of them, SGR 1900+ 14 and SGR 1806-20, coherent
pulsations of X-ray radiation with periods 5.16 and 7.47 s,
respectively, have been discovered recently [235—237]. Both
sources have about the same large braking index as the source
in Kes 73. The estimated surface temperatures of the objects
(Ts £ 1keV) exceed typical temperatures of ordinary cooling
NSs of their ages (¢ < 1000-10000 yr), if the ages are the
same as the parental supernova remnants.

Let us mention one more type of source. These are the so
called ‘anomalous X-ray pulsars’, X-ray sources with a soft
thermal spectrum (7 < 1 keV; e.g., Ref. [238]) and almost
sinusoidal light curve. Typical periods of their brightness
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variation are about ten seconds. The magnitude of the
pulsating component of their radiation is anomalously small
and more typical for the thermal radiation from the surface of
a cooling NS than for an X-ray pulsar. One cannot exclude
that at least some of these objects also belong to the family of
cooling magnetars. No binary companions were found for
these objects, and no accretion disks which would provide
accreted matter for X-ray pulsars. Powerful electrodynamic
radiation of a rotating NS with a superstrong magnetic field
would naturally explain the rapid spin down; an increase of
the thermal conductivity of the outer layers would produce a
sufficiently high surface temperature. The low ages of some
anomalous pulsars are also confirmed by the coincidence of
their positions with the centers of supernova remnants. They
are also radio silent.

Finally, let us mention two more radio silent isolated NSs.
They have been discovered quite recently; first, as bright
point-like sources of soft X-ray radiation in the ROSAT
surveys, and later as weak optical objects in special observa-
tions with the ground-based Keck Telescope and the Hubble
Space Telescope. These stars are not associated with super-
nova remnants.

One of them, RX J1856.5—3754 [239, 240] has a black
body surface temperature (8.5 + 1.4) x 10°K [241] for the
adopted values of R =10 km and M = 1.4M., and is
situated at a distance D < 130 pc. The radiation fluxes in the
optical filters F606W (6000 A) and F300W (3000 A), detected
with the Hubble Space Telescope [240], are 25.9 and 23.48
stellar magnitudes, respectively. They agree with the hypoth-
esis on the thermal origin of the spectrum in the spectral range
from optics to X-rays. The upper limit on the pulsating
component is rather high (about 15%). Further accumulation
of photon statistics will enable one to continue the search for
periodic pulsations. On the other hand, the observed thermal
radiation can be explained by accretion of interstellar gas on a
cold, weakly magnetized NS which moves slowly through
interstellar matter [240, 242]. In order to choose between these
two hypotheses one needs to measure the parallax and proper
motion of the object.

The other NS, RX J0720.4—-3125, is somewhat hotter (the
black body surface temperature is 79 & 4 eV). Its X-ray flux
pulsates with the period 8.39 s and modulation ~ 12% [243].
There are not very reliable indications of the spin down,
P~10"""-107"2 s s7'. Optical observations with the Keck
Telescope indicate the presence of an object identified with
this source. The detected fluxes are 26.6 £ 0.2 and 26.9 + 0.3
stellar magnitudes in the B and R filters, respectively [244].
For a distance to the source D < 100 pc, the weakness of the
optical emission is in favor of the hypothesis that the object is
an isolated NS. One can expect to be dealing either with a
cooling NS-magnetar or with an old, weakly magnetized NS
accreting matter from the interstellar medium. A choice of
correct hypothesis can be made only on the basis of future
observations.

Let us also mention two more radio silent NSs, RX
J0806.4—4123 [245] and IRX J130848.6 +212708 [246]
discovered most recently in the ROSAT surveys; they are
very similar to the two latter NSs. They are possibly cooling
NSs [247] but the observations are still insufficient to draw
final conclusions.

8.2 Theory and observations of cooling neutron stars
8.2.1 Necessity of superfluidity for interpretation of observa-
tions. The aim of this section is to confront the cooling theory

of superfluid NSs (Section 7.2) with observations (Section
8.1). Table 3 presents the data on the surface temperatures of
seven isolated NSs. In Fig. 20 these data (circles) are
compared with the cooling curves (Section 7.2). The diagonal
and horizontal shading shows the regions of the surface
temperature 7.°(¢) filled, respectively, by different standard
and enhanced cooling curves calculated by varying T, and
T¢p from 10° to 10'° K. The short-dash curves show cooling of
non-superfluid stars.

The ‘non-superfluid’ curves are seen to be in poor
agreement with observations. On the other hand, the observa-
tions can be explained by assuming superfluidity in the NS
cores. This is illustrated by the standard cooling curve (the
solid line). The values of T, and T, are chosen in such a way
that the curve describes the maximum number of observa-
tional points at once.

According to Fig. 20, all the ‘atmospheric’ temperatures
as well as the ‘black body’ temperatures of RX J0002 + 62,
PSR 0656+ 14 and Geminga are located in the allowed
regions of the standard and enhanced cooling of superfluid
NSs. Thus our cooling calculations can be compared with the
‘atmospheric’ and ‘black body’ temperatures 7, of these
sources.

The high black body surface temperatures of RX J0822 —
43, 1E 1207-52 (not presented in Fig. 20, but given in
Table 3), Vela, and PSR 1055—52 are not explained by our
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Figure 20. Observational data on the surface temperatures of NSs
obtained (Table 3) in the models of black body radiation (filled circles)
and hydrogen atmosphere (open circles). The shaded regions show the
ranges of 7¢* filled by the standard (diagonal shading) and the enhanced
(horizontal shading) cooling curves of NSs with different masses 1.30 M,
and M = 1.48 M, (for various T, and T¢p). The solid line shows the
standard cooling (1.30 M) for the specified values Ig T, and 1g T, (given
near the curve). The short-dashed lines exhibit the standard (upper line)
and enhanced (lower line) cooling of a non-superfluid NS. The dashed and
dot-and-dashed lines show, respectively, the standard and enhanced
cooling of a NS which possesses an envelope of mass 7 x 1071001,
composed of light elements (see Section 8.2.1).




772 D G Yakovlev, K P Levenfish, Yu A Shibanov

Physics— Uspekhi 42 (8)

Table 3. Observational data.

Source lgt, year P, ms Model * IgT, K Confidence Distance, kpc References
level T2°, % **
+0.02
H 6.23 ~0.02 95.5% 1.9-25 [252]
RX J0822-43 3.57 75 +0.05
bb 6.61 _ s 95.5% 2.5-35 [252]
+0.05
H 6.10 _; o6 90% 1.6-3.3 [222]
1E 120752 3.85 — +0'2
bb 6.49 70'01 90% 11-13 [222]
+0.03
H 6.03 —0.03 95.5% 2.7-3.5 [251]
RX J0002 + 62 3.95 % 242 N 0'18
bb 6.18_0']8 95.5% 3.1+£04 [251]
+0.04
H 5.90 —001 90% 0.4+0.12 [221]
PSR 0833-45 4.4 89 40.03
(Vela) bb 6.24 03 — 0.5 [253]
H 5 72-+—0,04 028 +0.06 254
T —-0.02 o 7 —0.05 (254]
PSR 0656+ 14 5.00 385 +0.02
bb 5.96 90% 0.76 [255]
—0.03
+0.08
H 5.25 —0.01 90% 0.008-0.022 [256]
RSR 5.53 237 +0'05
0630+ 178 bb 5.75 —0'08 90% 0.16 [257]
(Geminga) :
+0.03
PSR 1055-52 5.73 197 bb 5.88 04 — 0.9 [253]

* H observations are interpreted with a hydrogen atmosphere model, bb with a black body spectrum.
** Confidence level of temperature 7° (95.5% corresponds to the 2o level, and 90% corresponds to 1.64¢); a dash means that the level is not indicated

in the cited references.
*** The mean age is taken according to Ref. [248].
“ According to Ref. [249]
e According to Ref. [250]

models but can be explained by other models of cooling NSs,
particularly, models with superfluid cores. For instance, the
observations of the Vela pulsar agree with the standard
cooling of a superfluid NS (T =107 K, T, = 10'° K)
possessing an outer envelope of mass ~ 10~° M composed
of light elements [173]. High black body temperatures of RX
J0822—-43, 1E 1207—-52 and PSR 1055-52 may indicate
either the presence of some additional reheating mechanism
inside these sources (Section 8.1) or the presence of super-
strong (B 2 10'* G) magnetic fields (e.g., Ref. [166]). Finally,
one cannot exclude that the black body interpretation of their
spectra is incorrect (Section 8.1.2).

8.2.2 Confronting calculations and observations. Let us analyze
which critical temperatures of nucleon superfluidity in the NS
cores, T¢, and Ty, used in the cooling simulations (Section
7.2) agree with the observations of the NS thermal radiation
(Table 3). As seen from Fig. 20, we can explain the majority of
NS observations either by standard or by enhanced NS
cooling assuming the presence of nucleon superfluidity.
These observations include six ‘atmospheric’ interpretations
(RX J0822-43, 1E 1207-52, RX J0002+62, Vela, PSR
0656+ 14, Geminga) and three ‘black body’ ones (RX
J0002+ 62, PSR 0656 + 14, Geminga).

Let us assume that the NS atmospheres may contain
light elements whose surface density is insufficient (Section
7.2) to affect the cooling. In this case, we can use both the

‘black body’ and ‘atmospheric’ interpretations of the spectra
of thermal radiation. Although the values of M and R and,
accordingly, the gravitational redshift for our models
(Section 7.2.2) are somewhat different from those which
were obtained (or adopted) in interpretation of the observa-
tions, the temperatures 7.° from Table 3 and Fig. 20 can be
compared with our cooling curves for several reasons. First,
our calculations are not very sensitive to variation of a NS
mass or radius (see Sect. 8.3 below). Second, the confidence
regions of M and R, inferred from interpretation of
observations, include, as a rule, the values we use in
modeling.

For simplicity, we assume that the internal structure of the
indicated NSs is the same, and, particularly, the NSs have the
same mass. Then the critical temperatures of nucleons in their
cores should be the same. Let us analyse the confidence
regions of T, and T, constrained by the observations.
Including the observations of several NSs enables us to reduce
these regions.

The regions in question are plotted in Figs 21 —23. Figure
21 corresponds to the standard and enhanced cooling of NSs
(with masses 1.30 M, and 1.48 M, respectively) with a black
body spectrum. Figure 22 corresponds to the enhanced
cooling of the stars (1.48 M) possessing hydrogen atmo-
spheres. Finally, the standard cooling of NSs (1.30M) with
hydrogen atmospheres is shown in Fig. 23. In each figure, the
lines of different types enclose the confidence regions of T,
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Figure 21. Confidence regions of T, and T, which correspond to the ‘black body’ surface temperatures (Table 3, Fig. 20) of RX J0002+ 62, PSR
0656 + 14 and Geminga in the models of enhanced (left) and standard (right) NS cooling.

and T¢, associated with the error bars of the observed NS
surface temperatures 7.° (Table 3). The correspondence of
the lines to the selected NSs is displayed in Fig. 21. For the
PSR 0656 + 14 and Geminga pulsars, the isotherms are taken
from Figs 16—19. In each figure the actual overall confidence
region of T¢, and T, lies at the overlap of the confidence
regions of all objects.

Figures 21 —23 show that the observations of several NSs
at once can be explained either by the standard or by the
enhanced cooling, adopting either black body or atmospheric

interpretations of the spectra. In all the cases, there are ranges
of Tep and T, close or joint for all NSs; they do not contradict
to the microscopic theories of nucleon superfluidity in NSs
(Section 3.1).

According to the left panel of Fig. 21, by adopting the
enhanced cooling and the black body interpretation of the
observations we obtain two confidence regions of T¢, and T¢p;
each explains the cooling of three objects at once. The first
region corresponds to a moderate neutron superfluidity
(IgTen =8.1) and a strong proton superfluidity
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lg T, K

Figure 22. Same as in Fig. 21, but for the enhanced cooling and ‘atmospheric’ interpretation (Table 3) of spectra of thermal radiation from RX J0822—43,
1E 1207-52, RX J0002 + 62, Vela, PSR 0656 + 14 and Geminga. On the right panel, we show in more detail the region (shaded rectangle) in which the
allowed values of T¢, and T¢;, of the five latter objects are either close or intersect.
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10
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Figure 23. Same as in Fig. 22, but for the standard cooling.

lg T, K

(9.6 S 1g Ty < 9.8); the second, wider region corresponds to
a strong neutron superfluidity (9.75 < lgTe, < 10.0) and a
moderately weak proton superfluidity (Ig7¢, < 8.3). For
the standard cooling of a NS with the black body spectrum
(the right panel of Fig. 21), there are also two regions of
Ten and T, for the three NSs, but they are somewhat
different from those for the enhanced cooling. The first
region corresponds to a moderate neutron superfluidity
(8.0 £ 1g T, < 8.2) and a moderately strong proton super-
fluidity (8.7 < 1g T¢p < 9.1), while the second one is asso-
ciated with a strong neutron superfluidity (Ig 7., > 9.3)and a
moderately weak proton one (8.1 < Ig T, < 8.3).

In the case of enhanced cooling and ‘atmospheric’
surface temperatures (Fig. 22) there is the only region of
joint or very close values of T¢, and T¢, for five NSs (the
shaded rectangle on the right panel). It indicates a moderate
neutron (82 << IgTe, <835 and  strong  proton
(9.45 < 1gTep < 9.65)  superfluidity. Such  superfluidity
(g Ten = 8.3, 1g Ty = 9.6) enables us also to describe the
sixth object from the ‘atmospheric’ set (RX J0822—-43), if we
assume that it possesses a thermally insulating envelope of
light elements with a mass of 7 x 107197, (see Fig. 20).
However, even in the absence of the envelope, the confidence
region of T¢, and T, for this object is sufficiently close to the
joint confidence region indicated above.

Finally, for the standard cooling and the ‘atmospheric’
spectrum (Fig. 23), there is again a single confidence region of
T and Ty, where the critical temperatures are nearly the
same for the five NSs; it corresponds to moderately strong
superfluidity of n and p (8255 1gTe <835 and
8.0 S1gTe, < 8.4, shaded rectangle). The observations of
RX J0822-43 can also be explained by the presence of the
same superfluidity (Ig T, = 8.3, 1g T, = 8.2) assuming that
the object possesses an envelope of light elements of mass
7 x 10~1901,, (see Fig. 20). In the absence of the envelope, the
confidence region of Ty, and T, is outside the joint
confidence region since the error bar of 7¢7° for this object
lies at the boundary of the shaded region (filled by the cooling
curves of superfluid NSs).

8.3 Discussion

As follows from the results of Section 8.2, the majority of NS
observations can be explained using the adopted NS models
by the standard and enhanced cooling for the ‘black body’
and ‘atmospheric’ interpretations of the spectra observed. In
all these cases there are values of T, and T¢;, close or common
for all N'Ss which do not contradict the microscopic theories
(Section 3.1), but depend on the cooling type and interpreta-
tion of the thermal NS radiation.

The existence of the same critical temperatures for several
NSs at once is quite unexpected. Initially we expected
different joint confidence regions of T, and T, for different
pairs of NSs. The result is even more surprising taking into
account simplicity of our cooling models. It would be
interesting to confirm (or reject) these results using more
advanced cooling models and a larger number of objects.

We have checked that our results are rather insensitive to
variations of the NS mass M as long as M does not pass
through the threshold value M., = 1.442 M, (of switching on
the direct Urca). This fact is a consequence of the main
simplification of our models: the constancy of critical
temperatures throughout the NS core. In particular, the
standard cooling curves for NSs with masses lower than M.,
practically coincide (see, e.g., Fig. 2). The same takes place for
the enhanced cooling curves of NSs (with masses M 2 M.,), if
protons or neutrons in their cores possess moderate or strong
superfluidity with T, 2 103 K (just as for the joint confidence
regions of T, and T, obtained above).

We have assumed in our analysis that the NS ages ¢ are
known (Section 8.1.3). Then the confidence regions of T¢,, and
T, for each star were determined from an error bar of the
surface temperature 7, obtained from the observations.
Introduction of the error bars of Az instead of the fixed values
of ¢ would lead to additional broadening of the confidence
ranges of T, and T, for each NS and to slight broadening of
the joint confidence regions of 7., and T¢,. Let us mention
that the characteristic ages of PSR 0656 + 14, Geminga and
PSR 1055-52 are determined to within a factor of ~ 3. The
uncertainty in ages of young NSs is higher which, however,
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should not cause stronger broadening of the T¢, and T¢,
regions due to the weak slope of the cooling curves at
t = 10° - 10* yr (see Fig. 20).

For the black body interpretation of the thermal radiation
from NSs, our simulations predict strong neutron super-
fluidity, Ty ~ 10°7—10'9% K, and weak proton superfluidity
in the NS cores. This conclusion is in qualitative agreement
with the result by Page [124]. Strong proton superfluidity is
also possible in the presence of moderate neutron super-
fluidity. In such cases one superfluidity (n or p) is noticeably
stronger than the other. In both the cases of ‘black body’ and
‘atmospheric’ interpretations of the observations the largest
contrast of T¢, and T¢, takes place for NS cooling with the
direct Urca process allowed. Notice that such a superfluidity
is predicted by Takatsuka and Tamagaki [92].

In neither case do we need simultaneously strong super-
fluidities of n and p to explain the observations. This indicates
that the equation of state of the NS cores cannot be too soft
(the softness would mean weak nucleon—nucleon repulsion at
small separations which would induce especially strong
pairing, Section 3.1).

Finally let us mention that we can satisfy the observations
by varying the only parameter, T, if we assume the presence
of neutron superfluidity with T, ~ 1031-10%3 K. For
standard cooling, this parameter should lie in the moderate
range 1089 - 10°0 K, while for enhanced cooling it should be
larger, 1094 —10%%° K.

9. Conclusions

We have described one of a few methods to study the
fundamental properties of matter of density around the
nuclear matter density or several times higher. The method
is based on theoretical simulations of cooling of neutron stars
and comparison of the results with the observations of the
thermal radiation from isolated cooling neutron stars.

We have described all the basic elements of the theory of
cooling of neutron stars with standard nuclear composition:
stellar heat capacity (Section 3), neutrino cooling (Sections
4-06), the relationship between the internal and surface stellar
temperatures (Section 7.2.1). However we did not intend to
discuss all the cooling problems in detail but focused on a
relatively new direction of the theory which was initiated by
the remarkable paper by Page and Applegate [5]. These
authors were the first who noticed that neutron star cooling
could be very sensitive to the superfluidity of neutrons and
protons in their cores. The temperatures of the superfluidity
onset, in turn, are sensitive to the equation of state of
superdense matter. This opens the principal possibility of
exploring nucleon superfluidity and, accordingly, the equa-
tion of state in the neutron star cores.

The effects of superfluidity were included in cooling
simulations long before Page and Applegate [5]. However
they had not been the objects of special attention; systematic
analysis of the effects of superfluidity on the neutrino
luminosity and the heat capacity were absent, and the effects
were described by oversimplified expressions (Section 7.1).
We have tried to fill in this gap and presented the results of
detailed calculations of the heat capacity and neutrino
emissivities in superfluid matter in the framework of the
Bardeen — Cooper —Schrieffer theory (Sections 3-6). Our
consideration is done in a unified manner. The results are
mainly presented in the form of simple fit expressions
convenient for practical applications. Thus we have produced

a rather elaborated method to include the effects of super-
fluidity in simulations of neutron-star cooling. This method
can be extended easily to neutron star models with superfluid
hyperons.

For illustration, we have presented (Section 7.2) the
results of cooling simulations of neutron stars whose cores
contain superfluid neutrons and protons. For simplicity, the
critical temperatures T, and T¢, have been assumed constant
over the neutron star core. We have analyzed the effect of
superfluidity on the enhanced and standard cooling and
showed that this effect is really crucial. If standard cooling
of medium-aged (10?103 yr) neutron stars with non-super-
fluid cores goes much slower than cooling enhanced by the
direct Urca process, this is not so in the presence of super-
fluidity. As a whole, the nucleon superfluidity strongly
reduces the difference between standard and enhanced cool-
ing. This enables one, in principle, to explain the majority of
observational data by the standard cooling of the stars with
superfluid cores. On the other hand, this circumstance
disproves a widely accepted point of view that the direct
Urca process necessarily induces rapid cooling.

We have compared (Section 8.2) the results of cooling
simulations with the observational data on the thermal
radiation of neutron stars. In almost all the cases (for different
methods of inferring the surface temperatures from observa-
tional data) the observations can be explained in the models
of standard and enhanced cooling of a neutron star with a
superfluid core. It is important that the required values of the
critical temperatures T, and T, do not contradict to the
values predicted by various microscopic theories of nucleon
superfluidity in superdense matter (Section 3.1). However our
results should be regarded as preliminary; they cannot allow
us to identify reliably superfluidity and equation of state in
neutron star cores. To impose more stringent constraints one
needs to carry out more elaborated simulations of neutron
star cooling taking into account the density dependence of T,
and T¢;, in the stellar core. It would be very desirable to make
an equation of state of matter, used in cooling simulations,
consistent with the critical temperatures. For this purpose,
one needs a representative set of equations of state of
superdense matter (from soft to stiff ones), supplemented by
the values of Tey(p) and Tep(p), calculated from the same
microscopic models. This would enable one to construct a set
of more realistic cooling curves and improve thus the
‘calibration” of neutron stars as natural thermometers of
superfluidity in their cores. Comparing theory with observa-
tions one would be able to constrain strongly the set of
allowable equations of state. Unfortunately, simultaneous
microscopic calculations of the equations of state and super-
fluid gaps are almost absent. On the other hand, the surface
temperatures of the neutron stars cannot be determined
uniquely from observations so far.

We hope that after appearance of self-consistent calcula-
tions of the equations of state and superfluid gaps and after
the launch of orbital observatories of a new generation
(AXAF, XMM, ASTRO-E, SXG), which will produce more
reliable data on the surface temperatures of neutron stars, this
method will enable one to reach a deeper understanding of the
nature of superdense matter.
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